Phase transition in warm nuclear matter with alternative derivative coupling models

An analysis is performed of the liquid-gas phase transition of nuclear matter obtained from different versions of scalar derivate coupling suggested by Zimanyi and Moszkowski (ZM) and the results are compared with those obtained from the Walecka model. We present the phase diagram for the models and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review, C C, 1998-07, Vol.58 (1), p.426-433
Hauptverfasser: Malheiro, M., Delfino, A., Coelho, C. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue 1
container_start_page 426
container_title Physical Review, C
container_volume 58
creator Malheiro, M.
Delfino, A.
Coelho, C. T.
description An analysis is performed of the liquid-gas phase transition of nuclear matter obtained from different versions of scalar derivate coupling suggested by Zimanyi and Moszkowski (ZM) and the results are compared with those obtained from the Walecka model. We present the phase diagram for the models and one of them, the ZM3 model, has the lowest critical temperature T{sub c}=13.6thinspMeV with the lowest critical density {rho}{sub c}=0.037thinspfm{sup {minus}3} and pressure p{sub c}=0.157thinspMeVthinspfm{sup {minus}3}. These results are in accordance with recent observations from energetic heavy-ion collisions, which suggest a small liquid-gas phase region. {copyright} {ital 1998} {ital The American Physical Society}
doi_str_mv 10.1103/PhysRevC.58.426
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevC_58_426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_58_426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-87c469d0f3f08b39d155c6524baa62af07d07c4423f8e9a2ba4d8f974117c3283</originalsourceid><addsrcrecordid>eNo1kEtLAzEYRYMoWKtrt_EHTJvnTGYpRa1QsPgAd-FrJnEiM5mSpC39945U7-bexeEuDkK3lMwoJXy-bo_p1e4XM6lmgpVnaEKJqgtRk89zNCFSlgVTlF-iq5S-yRjOywl6W7eQLM4RQvLZDwH7gA8Qexx2prMQcQ8524gPPrcYunEGyH5vcWOj35-mGXbbzocv3A-N7dI1unDQJXvz11P08fjwvlgWq5en58X9qjCckFyoyoiybojjjqgNrxsqpSklExuAkoEjVUNGRDDulK2BbUA0ytWVoLQynCk-RXen3yFlr5Px2ZrWDCFYk3XJlWLVyMxPjIlDStE6vY2-h3jUlOhfb_rfm5ZKj974D-R0Y7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase transition in warm nuclear matter with alternative derivative coupling models</title><source>APS_美国物理学会期刊</source><creator>Malheiro, M. ; Delfino, A. ; Coelho, C. T.</creator><creatorcontrib>Malheiro, M. ; Delfino, A. ; Coelho, C. T.</creatorcontrib><description>An analysis is performed of the liquid-gas phase transition of nuclear matter obtained from different versions of scalar derivate coupling suggested by Zimanyi and Moszkowski (ZM) and the results are compared with those obtained from the Walecka model. We present the phase diagram for the models and one of them, the ZM3 model, has the lowest critical temperature T{sub c}=13.6thinspMeV with the lowest critical density {rho}{sub c}=0.037thinspfm{sup {minus}3} and pressure p{sub c}=0.157thinspMeVthinspfm{sup {minus}3}. These results are in accordance with recent observations from energetic heavy-ion collisions, which suggest a small liquid-gas phase region. {copyright} {ital 1998} {ital The American Physical Society}</description><identifier>ISSN: 0556-2813</identifier><identifier>EISSN: 1089-490X</identifier><identifier>DOI: 10.1103/PhysRevC.58.426</identifier><language>eng</language><publisher>United States</publisher><subject>COUPLING ; CRITICAL TEMPERATURE ; DENSITY ; HEAVY ION REACTIONS ; NUCLEAR MATTER ; PHASE DIAGRAMS ; PHASE TRANSFORMATIONS ; PHYSICS ; WALECKA MODEL</subject><ispartof>Physical Review, C, 1998-07, Vol.58 (1), p.426-433</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-87c469d0f3f08b39d155c6524baa62af07d07c4423f8e9a2ba4d8f974117c3283</citedby><cites>FETCH-LOGICAL-c300t-87c469d0f3f08b39d155c6524baa62af07d07c4423f8e9a2ba4d8f974117c3283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/638827$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Malheiro, M.</creatorcontrib><creatorcontrib>Delfino, A.</creatorcontrib><creatorcontrib>Coelho, C. T.</creatorcontrib><title>Phase transition in warm nuclear matter with alternative derivative coupling models</title><title>Physical Review, C</title><description>An analysis is performed of the liquid-gas phase transition of nuclear matter obtained from different versions of scalar derivate coupling suggested by Zimanyi and Moszkowski (ZM) and the results are compared with those obtained from the Walecka model. We present the phase diagram for the models and one of them, the ZM3 model, has the lowest critical temperature T{sub c}=13.6thinspMeV with the lowest critical density {rho}{sub c}=0.037thinspfm{sup {minus}3} and pressure p{sub c}=0.157thinspMeVthinspfm{sup {minus}3}. These results are in accordance with recent observations from energetic heavy-ion collisions, which suggest a small liquid-gas phase region. {copyright} {ital 1998} {ital The American Physical Society}</description><subject>COUPLING</subject><subject>CRITICAL TEMPERATURE</subject><subject>DENSITY</subject><subject>HEAVY ION REACTIONS</subject><subject>NUCLEAR MATTER</subject><subject>PHASE DIAGRAMS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>PHYSICS</subject><subject>WALECKA MODEL</subject><issn>0556-2813</issn><issn>1089-490X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLAzEYRYMoWKtrt_EHTJvnTGYpRa1QsPgAd-FrJnEiM5mSpC39945U7-bexeEuDkK3lMwoJXy-bo_p1e4XM6lmgpVnaEKJqgtRk89zNCFSlgVTlF-iq5S-yRjOywl6W7eQLM4RQvLZDwH7gA8Qexx2prMQcQ8524gPPrcYunEGyH5vcWOj35-mGXbbzocv3A-N7dI1unDQJXvz11P08fjwvlgWq5en58X9qjCckFyoyoiybojjjqgNrxsqpSklExuAkoEjVUNGRDDulK2BbUA0ytWVoLQynCk-RXen3yFlr5Px2ZrWDCFYk3XJlWLVyMxPjIlDStE6vY2-h3jUlOhfb_rfm5ZKj974D-R0Y7Q</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Malheiro, M.</creator><creator>Delfino, A.</creator><creator>Coelho, C. T.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19980701</creationdate><title>Phase transition in warm nuclear matter with alternative derivative coupling models</title><author>Malheiro, M. ; Delfino, A. ; Coelho, C. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-87c469d0f3f08b39d155c6524baa62af07d07c4423f8e9a2ba4d8f974117c3283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>COUPLING</topic><topic>CRITICAL TEMPERATURE</topic><topic>DENSITY</topic><topic>HEAVY ION REACTIONS</topic><topic>NUCLEAR MATTER</topic><topic>PHASE DIAGRAMS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>PHYSICS</topic><topic>WALECKA MODEL</topic><toplevel>online_resources</toplevel><creatorcontrib>Malheiro, M.</creatorcontrib><creatorcontrib>Delfino, A.</creatorcontrib><creatorcontrib>Coelho, C. T.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical Review, C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malheiro, M.</au><au>Delfino, A.</au><au>Coelho, C. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase transition in warm nuclear matter with alternative derivative coupling models</atitle><jtitle>Physical Review, C</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>58</volume><issue>1</issue><spage>426</spage><epage>433</epage><pages>426-433</pages><issn>0556-2813</issn><eissn>1089-490X</eissn><abstract>An analysis is performed of the liquid-gas phase transition of nuclear matter obtained from different versions of scalar derivate coupling suggested by Zimanyi and Moszkowski (ZM) and the results are compared with those obtained from the Walecka model. We present the phase diagram for the models and one of them, the ZM3 model, has the lowest critical temperature T{sub c}=13.6thinspMeV with the lowest critical density {rho}{sub c}=0.037thinspfm{sup {minus}3} and pressure p{sub c}=0.157thinspMeVthinspfm{sup {minus}3}. These results are in accordance with recent observations from energetic heavy-ion collisions, which suggest a small liquid-gas phase region. {copyright} {ital 1998} {ital The American Physical Society}</abstract><cop>United States</cop><doi>10.1103/PhysRevC.58.426</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0556-2813
ispartof Physical Review, C, 1998-07, Vol.58 (1), p.426-433
issn 0556-2813
1089-490X
language eng
recordid cdi_crossref_primary_10_1103_PhysRevC_58_426
source APS_美国物理学会期刊
subjects COUPLING
CRITICAL TEMPERATURE
DENSITY
HEAVY ION REACTIONS
NUCLEAR MATTER
PHASE DIAGRAMS
PHASE TRANSFORMATIONS
PHYSICS
WALECKA MODEL
title Phase transition in warm nuclear matter with alternative derivative coupling models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20transition%20in%20warm%20nuclear%20matter%20with%20alternative%20derivative%20coupling%20models&rft.jtitle=Physical%20Review,%20C&rft.au=Malheiro,%20M.&rft.date=1998-07-01&rft.volume=58&rft.issue=1&rft.spage=426&rft.epage=433&rft.pages=426-433&rft.issn=0556-2813&rft.eissn=1089-490X&rft_id=info:doi/10.1103/PhysRevC.58.426&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_58_426%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true