Phase transition in warm nuclear matter with alternative derivative coupling models
An analysis is performed of the liquid-gas phase transition of nuclear matter obtained from different versions of scalar derivate coupling suggested by Zimanyi and Moszkowski (ZM) and the results are compared with those obtained from the Walecka model. We present the phase diagram for the models and...
Gespeichert in:
Veröffentlicht in: | Physical Review, C C, 1998-07, Vol.58 (1), p.426-433 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | 1 |
container_start_page | 426 |
container_title | Physical Review, C |
container_volume | 58 |
creator | Malheiro, M. Delfino, A. Coelho, C. T. |
description | An analysis is performed of the liquid-gas phase transition of nuclear matter obtained from different versions of scalar derivate coupling suggested by Zimanyi and Moszkowski (ZM) and the results are compared with those obtained from the Walecka model. We present the phase diagram for the models and one of them, the ZM3 model, has the lowest critical temperature T{sub c}=13.6thinspMeV with the lowest critical density {rho}{sub c}=0.037thinspfm{sup {minus}3} and pressure p{sub c}=0.157thinspMeVthinspfm{sup {minus}3}. These results are in accordance with recent observations from energetic heavy-ion collisions, which suggest a small liquid-gas phase region. {copyright} {ital 1998} {ital The American Physical Society} |
doi_str_mv | 10.1103/PhysRevC.58.426 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevC_58_426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_58_426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-87c469d0f3f08b39d155c6524baa62af07d07c4423f8e9a2ba4d8f974117c3283</originalsourceid><addsrcrecordid>eNo1kEtLAzEYRYMoWKtrt_EHTJvnTGYpRa1QsPgAd-FrJnEiM5mSpC39945U7-bexeEuDkK3lMwoJXy-bo_p1e4XM6lmgpVnaEKJqgtRk89zNCFSlgVTlF-iq5S-yRjOywl6W7eQLM4RQvLZDwH7gA8Qexx2prMQcQ8524gPPrcYunEGyH5vcWOj35-mGXbbzocv3A-N7dI1unDQJXvz11P08fjwvlgWq5en58X9qjCckFyoyoiybojjjqgNrxsqpSklExuAkoEjVUNGRDDulK2BbUA0ytWVoLQynCk-RXen3yFlr5Px2ZrWDCFYk3XJlWLVyMxPjIlDStE6vY2-h3jUlOhfb_rfm5ZKj974D-R0Y7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase transition in warm nuclear matter with alternative derivative coupling models</title><source>APS_美国物理学会期刊</source><creator>Malheiro, M. ; Delfino, A. ; Coelho, C. T.</creator><creatorcontrib>Malheiro, M. ; Delfino, A. ; Coelho, C. T.</creatorcontrib><description>An analysis is performed of the liquid-gas phase transition of nuclear matter obtained from different versions of scalar derivate coupling suggested by Zimanyi and Moszkowski (ZM) and the results are compared with those obtained from the Walecka model. We present the phase diagram for the models and one of them, the ZM3 model, has the lowest critical temperature T{sub c}=13.6thinspMeV with the lowest critical density {rho}{sub c}=0.037thinspfm{sup {minus}3} and pressure p{sub c}=0.157thinspMeVthinspfm{sup {minus}3}. These results are in accordance with recent observations from energetic heavy-ion collisions, which suggest a small liquid-gas phase region. {copyright} {ital 1998} {ital The American Physical Society}</description><identifier>ISSN: 0556-2813</identifier><identifier>EISSN: 1089-490X</identifier><identifier>DOI: 10.1103/PhysRevC.58.426</identifier><language>eng</language><publisher>United States</publisher><subject>COUPLING ; CRITICAL TEMPERATURE ; DENSITY ; HEAVY ION REACTIONS ; NUCLEAR MATTER ; PHASE DIAGRAMS ; PHASE TRANSFORMATIONS ; PHYSICS ; WALECKA MODEL</subject><ispartof>Physical Review, C, 1998-07, Vol.58 (1), p.426-433</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-87c469d0f3f08b39d155c6524baa62af07d07c4423f8e9a2ba4d8f974117c3283</citedby><cites>FETCH-LOGICAL-c300t-87c469d0f3f08b39d155c6524baa62af07d07c4423f8e9a2ba4d8f974117c3283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/638827$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Malheiro, M.</creatorcontrib><creatorcontrib>Delfino, A.</creatorcontrib><creatorcontrib>Coelho, C. T.</creatorcontrib><title>Phase transition in warm nuclear matter with alternative derivative coupling models</title><title>Physical Review, C</title><description>An analysis is performed of the liquid-gas phase transition of nuclear matter obtained from different versions of scalar derivate coupling suggested by Zimanyi and Moszkowski (ZM) and the results are compared with those obtained from the Walecka model. We present the phase diagram for the models and one of them, the ZM3 model, has the lowest critical temperature T{sub c}=13.6thinspMeV with the lowest critical density {rho}{sub c}=0.037thinspfm{sup {minus}3} and pressure p{sub c}=0.157thinspMeVthinspfm{sup {minus}3}. These results are in accordance with recent observations from energetic heavy-ion collisions, which suggest a small liquid-gas phase region. {copyright} {ital 1998} {ital The American Physical Society}</description><subject>COUPLING</subject><subject>CRITICAL TEMPERATURE</subject><subject>DENSITY</subject><subject>HEAVY ION REACTIONS</subject><subject>NUCLEAR MATTER</subject><subject>PHASE DIAGRAMS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>PHYSICS</subject><subject>WALECKA MODEL</subject><issn>0556-2813</issn><issn>1089-490X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLAzEYRYMoWKtrt_EHTJvnTGYpRa1QsPgAd-FrJnEiM5mSpC39945U7-bexeEuDkK3lMwoJXy-bo_p1e4XM6lmgpVnaEKJqgtRk89zNCFSlgVTlF-iq5S-yRjOywl6W7eQLM4RQvLZDwH7gA8Qexx2prMQcQ8524gPPrcYunEGyH5vcWOj35-mGXbbzocv3A-N7dI1unDQJXvz11P08fjwvlgWq5en58X9qjCckFyoyoiybojjjqgNrxsqpSklExuAkoEjVUNGRDDulK2BbUA0ytWVoLQynCk-RXen3yFlr5Px2ZrWDCFYk3XJlWLVyMxPjIlDStE6vY2-h3jUlOhfb_rfm5ZKj974D-R0Y7Q</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Malheiro, M.</creator><creator>Delfino, A.</creator><creator>Coelho, C. T.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19980701</creationdate><title>Phase transition in warm nuclear matter with alternative derivative coupling models</title><author>Malheiro, M. ; Delfino, A. ; Coelho, C. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-87c469d0f3f08b39d155c6524baa62af07d07c4423f8e9a2ba4d8f974117c3283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>COUPLING</topic><topic>CRITICAL TEMPERATURE</topic><topic>DENSITY</topic><topic>HEAVY ION REACTIONS</topic><topic>NUCLEAR MATTER</topic><topic>PHASE DIAGRAMS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>PHYSICS</topic><topic>WALECKA MODEL</topic><toplevel>online_resources</toplevel><creatorcontrib>Malheiro, M.</creatorcontrib><creatorcontrib>Delfino, A.</creatorcontrib><creatorcontrib>Coelho, C. T.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical Review, C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malheiro, M.</au><au>Delfino, A.</au><au>Coelho, C. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase transition in warm nuclear matter with alternative derivative coupling models</atitle><jtitle>Physical Review, C</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>58</volume><issue>1</issue><spage>426</spage><epage>433</epage><pages>426-433</pages><issn>0556-2813</issn><eissn>1089-490X</eissn><abstract>An analysis is performed of the liquid-gas phase transition of nuclear matter obtained from different versions of scalar derivate coupling suggested by Zimanyi and Moszkowski (ZM) and the results are compared with those obtained from the Walecka model. We present the phase diagram for the models and one of them, the ZM3 model, has the lowest critical temperature T{sub c}=13.6thinspMeV with the lowest critical density {rho}{sub c}=0.037thinspfm{sup {minus}3} and pressure p{sub c}=0.157thinspMeVthinspfm{sup {minus}3}. These results are in accordance with recent observations from energetic heavy-ion collisions, which suggest a small liquid-gas phase region. {copyright} {ital 1998} {ital The American Physical Society}</abstract><cop>United States</cop><doi>10.1103/PhysRevC.58.426</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0556-2813 |
ispartof | Physical Review, C, 1998-07, Vol.58 (1), p.426-433 |
issn | 0556-2813 1089-490X |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRevC_58_426 |
source | APS_美国物理学会期刊 |
subjects | COUPLING CRITICAL TEMPERATURE DENSITY HEAVY ION REACTIONS NUCLEAR MATTER PHASE DIAGRAMS PHASE TRANSFORMATIONS PHYSICS WALECKA MODEL |
title | Phase transition in warm nuclear matter with alternative derivative coupling models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20transition%20in%20warm%20nuclear%20matter%20with%20alternative%20derivative%20coupling%20models&rft.jtitle=Physical%20Review,%20C&rft.au=Malheiro,%20M.&rft.date=1998-07-01&rft.volume=58&rft.issue=1&rft.spage=426&rft.epage=433&rft.pages=426-433&rft.issn=0556-2813&rft.eissn=1089-490X&rft_id=info:doi/10.1103/PhysRevC.58.426&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_58_426%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |