Particle identity and the optical potential for elastic two-fragment collisions
The permutation symmetries resulting from particle identity are incorporated into a complete and consistent set of scattering integral equations which are partition labeled and which also possess a multiple scattering structure. These equations are applied to the investigation of the optical potenti...
Gespeichert in:
Veröffentlicht in: | Phys. Rev., C; (United States) C; (United States), 1980-09, Vol.22 (3), p.949-963 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 963 |
---|---|
container_issue | 3 |
container_start_page | 949 |
container_title | Phys. Rev., C; (United States) |
container_volume | 22 |
creator | Goldflam, R. Kowalski, K. L. |
description | The permutation symmetries resulting from particle identity are incorporated into a complete and consistent set of scattering integral equations which are partition labeled and which also possess a multiple scattering structure. These equations are applied to the investigation of the optical potential for elastic two-fragment collisions including all identity effects. It is found that, among the standard off-shell extensions for the transition operators, only the one proposed by Alt, Grassberger, and Sandhas is entirely satisfactory for the definition of the optical potential. A dynamical integral equation for the symmetrized optical potential is derived. Several alternative forms of this equation are developed. Various low-order approximations to these equations are proposed. |
doi_str_mv | 10.1103/PhysRevC.22.949 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevC_22_949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_22_949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183t-a7016da109a5595148dcca453009f0c292ddd1fc091f90f2fa51ae888ba3c913</originalsourceid><addsrcrecordid>eNo1kEtLQzEQRrNQsFbXboP722aSm5ospfiCQot0H8Y8bOT2piRB6b83pTqbGeZ8DMMh5A7YDICJ-WZ3LO_-eznjfKZ7fUEmTMpFxxWIK3JdyhdrJcRiQtYbzDXawdPo_FhjPVIcHa07T9OhARzoIdUTaVNImfoBS9vT-pO6kPFz3xi1aRhiiWksN-Qy4FD87V-fku3z03b52q3WL2_Lx1VnQYna4QODhUNgGqXUEnrlrMVeCsZ0YJZr7pyDYJmGoFngASWgV0p9oLAaxJTcn8-m9owpNlZvdzaNo7fVSJCKc9ZC83PI5lRK9sEcctxjPhpg5uTJ_HsynJvmSfwCULpgNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Particle identity and the optical potential for elastic two-fragment collisions</title><source>American Physical Society Journals</source><creator>Goldflam, R. ; Kowalski, K. L.</creator><creatorcontrib>Goldflam, R. ; Kowalski, K. L. ; Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106</creatorcontrib><description>The permutation symmetries resulting from particle identity are incorporated into a complete and consistent set of scattering integral equations which are partition labeled and which also possess a multiple scattering structure. These equations are applied to the investigation of the optical potential for elastic two-fragment collisions including all identity effects. It is found that, among the standard off-shell extensions for the transition operators, only the one proposed by Alt, Grassberger, and Sandhas is entirely satisfactory for the definition of the optical potential. A dynamical integral equation for the symmetrized optical potential is derived. Several alternative forms of this equation are developed. Various low-order approximations to these equations are proposed.</description><identifier>ISSN: 0556-2813</identifier><identifier>DOI: 10.1103/PhysRevC.22.949</identifier><language>eng</language><publisher>United States</publisher><subject>653003 - Nuclear Theory- Nuclear Reactions & Scattering ; 653007 - Nuclear Theory- Nuclear Models- (-1987) ; ELASTIC SCATTERING ; EQUATIONS ; EXCHANGE INTERACTIONS ; INTEGRAL EQUATIONS ; INTERACTIONS ; KERNELS ; MANY-BODY PROBLEM ; MATHEMATICAL MODELS ; MULTIPLE SCATTERING ; NUCLEAR MODELS ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; NUCLEAR POTENTIAL ; OPTICAL MODELS ; POTENTIALS ; SCATTERING ; SHELL MODELS ; TWO-BODY PROBLEM ; UNITARITY</subject><ispartof>Phys. Rev., C; (United States), 1980-09, Vol.22 (3), p.949-963</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c183t-a7016da109a5595148dcca453009f0c292ddd1fc091f90f2fa51ae888ba3c913</citedby><cites>FETCH-LOGICAL-c183t-a7016da109a5595148dcca453009f0c292ddd1fc091f90f2fa51ae888ba3c913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5158220$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldflam, R.</creatorcontrib><creatorcontrib>Kowalski, K. L.</creatorcontrib><creatorcontrib>Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106</creatorcontrib><title>Particle identity and the optical potential for elastic two-fragment collisions</title><title>Phys. Rev., C; (United States)</title><description>The permutation symmetries resulting from particle identity are incorporated into a complete and consistent set of scattering integral equations which are partition labeled and which also possess a multiple scattering structure. These equations are applied to the investigation of the optical potential for elastic two-fragment collisions including all identity effects. It is found that, among the standard off-shell extensions for the transition operators, only the one proposed by Alt, Grassberger, and Sandhas is entirely satisfactory for the definition of the optical potential. A dynamical integral equation for the symmetrized optical potential is derived. Several alternative forms of this equation are developed. Various low-order approximations to these equations are proposed.</description><subject>653003 - Nuclear Theory- Nuclear Reactions & Scattering</subject><subject>653007 - Nuclear Theory- Nuclear Models- (-1987)</subject><subject>ELASTIC SCATTERING</subject><subject>EQUATIONS</subject><subject>EXCHANGE INTERACTIONS</subject><subject>INTEGRAL EQUATIONS</subject><subject>INTERACTIONS</subject><subject>KERNELS</subject><subject>MANY-BODY PROBLEM</subject><subject>MATHEMATICAL MODELS</subject><subject>MULTIPLE SCATTERING</subject><subject>NUCLEAR MODELS</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>NUCLEAR POTENTIAL</subject><subject>OPTICAL MODELS</subject><subject>POTENTIALS</subject><subject>SCATTERING</subject><subject>SHELL MODELS</subject><subject>TWO-BODY PROBLEM</subject><subject>UNITARITY</subject><issn>0556-2813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLQzEQRrNQsFbXboP722aSm5ospfiCQot0H8Y8bOT2piRB6b83pTqbGeZ8DMMh5A7YDICJ-WZ3LO_-eznjfKZ7fUEmTMpFxxWIK3JdyhdrJcRiQtYbzDXawdPo_FhjPVIcHa07T9OhARzoIdUTaVNImfoBS9vT-pO6kPFz3xi1aRhiiWksN-Qy4FD87V-fku3z03b52q3WL2_Lx1VnQYna4QODhUNgGqXUEnrlrMVeCsZ0YJZr7pyDYJmGoFngASWgV0p9oLAaxJTcn8-m9owpNlZvdzaNo7fVSJCKc9ZC83PI5lRK9sEcctxjPhpg5uTJ_HsynJvmSfwCULpgNQ</recordid><startdate>19800901</startdate><enddate>19800901</enddate><creator>Goldflam, R.</creator><creator>Kowalski, K. L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19800901</creationdate><title>Particle identity and the optical potential for elastic two-fragment collisions</title><author>Goldflam, R. ; Kowalski, K. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183t-a7016da109a5595148dcca453009f0c292ddd1fc091f90f2fa51ae888ba3c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>653003 - Nuclear Theory- Nuclear Reactions & Scattering</topic><topic>653007 - Nuclear Theory- Nuclear Models- (-1987)</topic><topic>ELASTIC SCATTERING</topic><topic>EQUATIONS</topic><topic>EXCHANGE INTERACTIONS</topic><topic>INTEGRAL EQUATIONS</topic><topic>INTERACTIONS</topic><topic>KERNELS</topic><topic>MANY-BODY PROBLEM</topic><topic>MATHEMATICAL MODELS</topic><topic>MULTIPLE SCATTERING</topic><topic>NUCLEAR MODELS</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>NUCLEAR POTENTIAL</topic><topic>OPTICAL MODELS</topic><topic>POTENTIALS</topic><topic>SCATTERING</topic><topic>SHELL MODELS</topic><topic>TWO-BODY PROBLEM</topic><topic>UNITARITY</topic><toplevel>online_resources</toplevel><creatorcontrib>Goldflam, R.</creatorcontrib><creatorcontrib>Kowalski, K. L.</creatorcontrib><creatorcontrib>Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev., C; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldflam, R.</au><au>Kowalski, K. L.</au><aucorp>Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle identity and the optical potential for elastic two-fragment collisions</atitle><jtitle>Phys. Rev., C; (United States)</jtitle><date>1980-09-01</date><risdate>1980</risdate><volume>22</volume><issue>3</issue><spage>949</spage><epage>963</epage><pages>949-963</pages><issn>0556-2813</issn><abstract>The permutation symmetries resulting from particle identity are incorporated into a complete and consistent set of scattering integral equations which are partition labeled and which also possess a multiple scattering structure. These equations are applied to the investigation of the optical potential for elastic two-fragment collisions including all identity effects. It is found that, among the standard off-shell extensions for the transition operators, only the one proposed by Alt, Grassberger, and Sandhas is entirely satisfactory for the definition of the optical potential. A dynamical integral equation for the symmetrized optical potential is derived. Several alternative forms of this equation are developed. Various low-order approximations to these equations are proposed.</abstract><cop>United States</cop><doi>10.1103/PhysRevC.22.949</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0556-2813 |
ispartof | Phys. Rev., C; (United States), 1980-09, Vol.22 (3), p.949-963 |
issn | 0556-2813 |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRevC_22_949 |
source | American Physical Society Journals |
subjects | 653003 - Nuclear Theory- Nuclear Reactions & Scattering 653007 - Nuclear Theory- Nuclear Models- (-1987) ELASTIC SCATTERING EQUATIONS EXCHANGE INTERACTIONS INTEGRAL EQUATIONS INTERACTIONS KERNELS MANY-BODY PROBLEM MATHEMATICAL MODELS MULTIPLE SCATTERING NUCLEAR MODELS NUCLEAR PHYSICS AND RADIATION PHYSICS NUCLEAR POTENTIAL OPTICAL MODELS POTENTIALS SCATTERING SHELL MODELS TWO-BODY PROBLEM UNITARITY |
title | Particle identity and the optical potential for elastic two-fragment collisions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20identity%20and%20the%20optical%20potential%20for%20elastic%20two-fragment%20collisions&rft.jtitle=Phys.%20Rev.,%20C;%20(United%20States)&rft.au=Goldflam,%20R.&rft.aucorp=Department%20of%20Physics,%20Case%20Western%20Reserve%20University,%20Cleveland,%20Ohio%2044106&rft.date=1980-09-01&rft.volume=22&rft.issue=3&rft.spage=949&rft.epage=963&rft.pages=949-963&rft.issn=0556-2813&rft_id=info:doi/10.1103/PhysRevC.22.949&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_22_949%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |