Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods
Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtai...
Gespeichert in:
Veröffentlicht in: | Physical review. C 2024-08, Vol.110 (2), Article 025501 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physical review. C |
container_volume | 110 |
creator | Kowal, Beata E. Graczyk, Krzysztof M. Ankowski, Artur M. Banerjee, Rwik Dharmapal Prasad, Hemant Sobczyk, Jan T. |
description | Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the χ 2 defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm. |
doi_str_mv | 10.1103/PhysRevC.110.025501 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevC_110_025501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_110_025501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-b8d6381cf71d192f2bd7a72871dad4b5b44766ca467de40537550b4adbd2f07c3</originalsourceid><addsrcrecordid>eNo9kNtKw0AURQdRsNR-gS_zA6lzSyZ5lFAvUFBEHyWcmTmxI7mUmbGQv7eh1aezFxs2nEXILWdrzpm8e91N8Q0P9UxrJvKc8QuyEKqosqqq5OV_LvNrsorxmzHGC1Zpzhbkc9PvffAWOtr6FGkaqR9s9xP9ASl2aFMYh8xCMONAo4WUMPjhizpIQEeTwA_oqJmoQ9xnHUIY5rrHtBtdvCFXLXQRV-e7JB8Pm_f6Kdu-PD7X99vMcq1SZkpXyJLbVnPHK9EK4zRoUR4RnDK5UUoXhQVVaIeK5VIfnzQKnHGiZdrKJZGnXRvGGAO2zT74HsLUcNbMkpo_STM1J0nyF8uUXic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods</title><source>American Physical Society</source><creator>Kowal, Beata E. ; Graczyk, Krzysztof M. ; Ankowski, Artur M. ; Banerjee, Rwik Dharmapal ; Prasad, Hemant ; Sobczyk, Jan T.</creator><creatorcontrib>Kowal, Beata E. ; Graczyk, Krzysztof M. ; Ankowski, Artur M. ; Banerjee, Rwik Dharmapal ; Prasad, Hemant ; Sobczyk, Jan T.</creatorcontrib><description>Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the χ 2 defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.110.025501</identifier><language>eng</language><ispartof>Physical review. C, 2024-08, Vol.110 (2), Article 025501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c174t-b8d6381cf71d192f2bd7a72871dad4b5b44766ca467de40537550b4adbd2f07c3</cites><orcidid>0000-0003-3646-1653 ; 0000-0002-0038-6340 ; 0000-0003-4073-8686 ; 0000-0003-3639-7532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Kowal, Beata E.</creatorcontrib><creatorcontrib>Graczyk, Krzysztof M.</creatorcontrib><creatorcontrib>Ankowski, Artur M.</creatorcontrib><creatorcontrib>Banerjee, Rwik Dharmapal</creatorcontrib><creatorcontrib>Prasad, Hemant</creatorcontrib><creatorcontrib>Sobczyk, Jan T.</creatorcontrib><title>Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods</title><title>Physical review. C</title><description>Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the χ 2 defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.</description><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKw0AURQdRsNR-gS_zA6lzSyZ5lFAvUFBEHyWcmTmxI7mUmbGQv7eh1aezFxs2nEXILWdrzpm8e91N8Q0P9UxrJvKc8QuyEKqosqqq5OV_LvNrsorxmzHGC1Zpzhbkc9PvffAWOtr6FGkaqR9s9xP9ASl2aFMYh8xCMONAo4WUMPjhizpIQEeTwA_oqJmoQ9xnHUIY5rrHtBtdvCFXLXQRV-e7JB8Pm_f6Kdu-PD7X99vMcq1SZkpXyJLbVnPHK9EK4zRoUR4RnDK5UUoXhQVVaIeK5VIfnzQKnHGiZdrKJZGnXRvGGAO2zT74HsLUcNbMkpo_STM1J0nyF8uUXic</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Kowal, Beata E.</creator><creator>Graczyk, Krzysztof M.</creator><creator>Ankowski, Artur M.</creator><creator>Banerjee, Rwik Dharmapal</creator><creator>Prasad, Hemant</creator><creator>Sobczyk, Jan T.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3646-1653</orcidid><orcidid>https://orcid.org/0000-0002-0038-6340</orcidid><orcidid>https://orcid.org/0000-0003-4073-8686</orcidid><orcidid>https://orcid.org/0000-0003-3639-7532</orcidid></search><sort><creationdate>202408</creationdate><title>Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods</title><author>Kowal, Beata E. ; Graczyk, Krzysztof M. ; Ankowski, Artur M. ; Banerjee, Rwik Dharmapal ; Prasad, Hemant ; Sobczyk, Jan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-b8d6381cf71d192f2bd7a72871dad4b5b44766ca467de40537550b4adbd2f07c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowal, Beata E.</creatorcontrib><creatorcontrib>Graczyk, Krzysztof M.</creatorcontrib><creatorcontrib>Ankowski, Artur M.</creatorcontrib><creatorcontrib>Banerjee, Rwik Dharmapal</creatorcontrib><creatorcontrib>Prasad, Hemant</creatorcontrib><creatorcontrib>Sobczyk, Jan T.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowal, Beata E.</au><au>Graczyk, Krzysztof M.</au><au>Ankowski, Artur M.</au><au>Banerjee, Rwik Dharmapal</au><au>Prasad, Hemant</au><au>Sobczyk, Jan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods</atitle><jtitle>Physical review. C</jtitle><date>2024-08</date><risdate>2024</risdate><volume>110</volume><issue>2</issue><artnum>025501</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the χ 2 defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.</abstract><doi>10.1103/PhysRevC.110.025501</doi><orcidid>https://orcid.org/0000-0003-3646-1653</orcidid><orcidid>https://orcid.org/0000-0002-0038-6340</orcidid><orcidid>https://orcid.org/0000-0003-4073-8686</orcidid><orcidid>https://orcid.org/0000-0003-3639-7532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9985 |
ispartof | Physical review. C, 2024-08, Vol.110 (2), Article 025501 |
issn | 2469-9985 2469-9993 |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRevC_110_025501 |
source | American Physical Society |
title | Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20fits%20to%20inclusive%20electron-carbon%20scattering%20data%20obtained%20by%20deep-learning%20methods&rft.jtitle=Physical%20review.%20C&rft.au=Kowal,%20Beata%20E.&rft.date=2024-08&rft.volume=110&rft.issue=2&rft.artnum=025501&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.110.025501&rft_dat=%3Ccrossref%3E10_1103_PhysRevC_110_025501%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |