Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods

Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. C 2024-08, Vol.110 (2), Article 025501
Hauptverfasser: Kowal, Beata E., Graczyk, Krzysztof M., Ankowski, Artur M., Banerjee, Rwik Dharmapal, Prasad, Hemant, Sobczyk, Jan T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physical review. C
container_volume 110
creator Kowal, Beata E.
Graczyk, Krzysztof M.
Ankowski, Artur M.
Banerjee, Rwik Dharmapal
Prasad, Hemant
Sobczyk, Jan T.
description Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the χ 2 defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.
doi_str_mv 10.1103/PhysRevC.110.025501
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevC_110_025501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_110_025501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-b8d6381cf71d192f2bd7a72871dad4b5b44766ca467de40537550b4adbd2f07c3</originalsourceid><addsrcrecordid>eNo9kNtKw0AURQdRsNR-gS_zA6lzSyZ5lFAvUFBEHyWcmTmxI7mUmbGQv7eh1aezFxs2nEXILWdrzpm8e91N8Q0P9UxrJvKc8QuyEKqosqqq5OV_LvNrsorxmzHGC1Zpzhbkc9PvffAWOtr6FGkaqR9s9xP9ASl2aFMYh8xCMONAo4WUMPjhizpIQEeTwA_oqJmoQ9xnHUIY5rrHtBtdvCFXLXQRV-e7JB8Pm_f6Kdu-PD7X99vMcq1SZkpXyJLbVnPHK9EK4zRoUR4RnDK5UUoXhQVVaIeK5VIfnzQKnHGiZdrKJZGnXRvGGAO2zT74HsLUcNbMkpo_STM1J0nyF8uUXic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods</title><source>American Physical Society</source><creator>Kowal, Beata E. ; Graczyk, Krzysztof M. ; Ankowski, Artur M. ; Banerjee, Rwik Dharmapal ; Prasad, Hemant ; Sobczyk, Jan T.</creator><creatorcontrib>Kowal, Beata E. ; Graczyk, Krzysztof M. ; Ankowski, Artur M. ; Banerjee, Rwik Dharmapal ; Prasad, Hemant ; Sobczyk, Jan T.</creatorcontrib><description>Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the χ 2 defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.110.025501</identifier><language>eng</language><ispartof>Physical review. C, 2024-08, Vol.110 (2), Article 025501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c174t-b8d6381cf71d192f2bd7a72871dad4b5b44766ca467de40537550b4adbd2f07c3</cites><orcidid>0000-0003-3646-1653 ; 0000-0002-0038-6340 ; 0000-0003-4073-8686 ; 0000-0003-3639-7532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Kowal, Beata E.</creatorcontrib><creatorcontrib>Graczyk, Krzysztof M.</creatorcontrib><creatorcontrib>Ankowski, Artur M.</creatorcontrib><creatorcontrib>Banerjee, Rwik Dharmapal</creatorcontrib><creatorcontrib>Prasad, Hemant</creatorcontrib><creatorcontrib>Sobczyk, Jan T.</creatorcontrib><title>Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods</title><title>Physical review. C</title><description>Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the χ 2 defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.</description><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKw0AURQdRsNR-gS_zA6lzSyZ5lFAvUFBEHyWcmTmxI7mUmbGQv7eh1aezFxs2nEXILWdrzpm8e91N8Q0P9UxrJvKc8QuyEKqosqqq5OV_LvNrsorxmzHGC1Zpzhbkc9PvffAWOtr6FGkaqR9s9xP9ASl2aFMYh8xCMONAo4WUMPjhizpIQEeTwA_oqJmoQ9xnHUIY5rrHtBtdvCFXLXQRV-e7JB8Pm_f6Kdu-PD7X99vMcq1SZkpXyJLbVnPHK9EK4zRoUR4RnDK5UUoXhQVVaIeK5VIfnzQKnHGiZdrKJZGnXRvGGAO2zT74HsLUcNbMkpo_STM1J0nyF8uUXic</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Kowal, Beata E.</creator><creator>Graczyk, Krzysztof M.</creator><creator>Ankowski, Artur M.</creator><creator>Banerjee, Rwik Dharmapal</creator><creator>Prasad, Hemant</creator><creator>Sobczyk, Jan T.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3646-1653</orcidid><orcidid>https://orcid.org/0000-0002-0038-6340</orcidid><orcidid>https://orcid.org/0000-0003-4073-8686</orcidid><orcidid>https://orcid.org/0000-0003-3639-7532</orcidid></search><sort><creationdate>202408</creationdate><title>Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods</title><author>Kowal, Beata E. ; Graczyk, Krzysztof M. ; Ankowski, Artur M. ; Banerjee, Rwik Dharmapal ; Prasad, Hemant ; Sobczyk, Jan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-b8d6381cf71d192f2bd7a72871dad4b5b44766ca467de40537550b4adbd2f07c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowal, Beata E.</creatorcontrib><creatorcontrib>Graczyk, Krzysztof M.</creatorcontrib><creatorcontrib>Ankowski, Artur M.</creatorcontrib><creatorcontrib>Banerjee, Rwik Dharmapal</creatorcontrib><creatorcontrib>Prasad, Hemant</creatorcontrib><creatorcontrib>Sobczyk, Jan T.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowal, Beata E.</au><au>Graczyk, Krzysztof M.</au><au>Ankowski, Artur M.</au><au>Banerjee, Rwik Dharmapal</au><au>Prasad, Hemant</au><au>Sobczyk, Jan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods</atitle><jtitle>Physical review. C</jtitle><date>2024-08</date><risdate>2024</risdate><volume>110</volume><issue>2</issue><artnum>025501</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the χ 2 defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.</abstract><doi>10.1103/PhysRevC.110.025501</doi><orcidid>https://orcid.org/0000-0003-3646-1653</orcidid><orcidid>https://orcid.org/0000-0002-0038-6340</orcidid><orcidid>https://orcid.org/0000-0003-4073-8686</orcidid><orcidid>https://orcid.org/0000-0003-3639-7532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9985
ispartof Physical review. C, 2024-08, Vol.110 (2), Article 025501
issn 2469-9985
2469-9993
language eng
recordid cdi_crossref_primary_10_1103_PhysRevC_110_025501
source American Physical Society
title Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20fits%20to%20inclusive%20electron-carbon%20scattering%20data%20obtained%20by%20deep-learning%20methods&rft.jtitle=Physical%20review.%20C&rft.au=Kowal,%20Beata%20E.&rft.date=2024-08&rft.volume=110&rft.issue=2&rft.artnum=025501&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.110.025501&rft_dat=%3Ccrossref%3E10_1103_PhysRevC_110_025501%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true