Random walks on finite lattices with traps

We consider dissipative processes involving both chemical reaction and physical diffusion in systems for which the influence of boundaries and system size on the dynamics cannot be neglected. We report the results of Monte Carlo simulations on an irreversible reaction in a confined system subject to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev., B: Condens. Matter; (United States) B: Condens. Matter; (United States), 1980-01, Vol.21 (4), p.1400-1407
Hauptverfasser: Hatlee, Michael D., Kozak, John J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1407
container_issue 4
container_start_page 1400
container_title Phys. Rev., B: Condens. Matter; (United States)
container_volume 21
creator Hatlee, Michael D.
Kozak, John J.
description We consider dissipative processes involving both chemical reaction and physical diffusion in systems for which the influence of boundaries and system size on the dynamics cannot be neglected. We report the results of Monte Carlo simulations on an irreversible reaction in a confined system subject to two sorts of finite boundary conditions. The problem is posed in such a way as to take maximal advantage of two earlier studies: Montroll's work on random walks on d-dimensional periodic lattices with traps, and the work of Sanders, Ruijgrok, and ten Bosch on random walks on two-dimensional finite lattices with traps. Our results are used to discuss the concept of reduction of dimensionality as introduced by Adam and Delbrueck in their study of biological diffusion processes.
doi_str_mv 10.1103/PhysRevB.21.1400
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevB_21_1400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevB_21_1400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-1016e710e316781d7bd3695ec05a6c0895ebecd4b0618e708956135fa6ce93623</originalsourceid><addsrcrecordid>eNo1kEFLxDAQhXNQcF29ewwehdZM0qbJURddhQVl0XNI0ymNdtulCS77701ZncsbZh7zho-QG2A5ABP3790xbPHnMeeQQ8HYGVkwkCIDxfUFuQzhi6XiUi_I3dYOzbijB9t_BzoOtPWDj0h7G6N3GOjBx47Gye7DFTlvbR_w-k-X5PP56WP1km3e1q-rh03muFQxgxSFFTAUICsFTVU3QuoSHSutdEyltkbXFDWToLCaBxJE2aYlaiG5WJLb090xRG-CS--4zo3DgC6aslSF1kUysZPJTWMIE7ZmP_mdnY4GmJkhmH8IhoOZIYhfF4tRoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random walks on finite lattices with traps</title><source>American Physical Society Journals</source><creator>Hatlee, Michael D. ; Kozak, John J.</creator><creatorcontrib>Hatlee, Michael D. ; Kozak, John J. ; Department of Chemistry and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556</creatorcontrib><description>We consider dissipative processes involving both chemical reaction and physical diffusion in systems for which the influence of boundaries and system size on the dynamics cannot be neglected. We report the results of Monte Carlo simulations on an irreversible reaction in a confined system subject to two sorts of finite boundary conditions. The problem is posed in such a way as to take maximal advantage of two earlier studies: Montroll's work on random walks on d-dimensional periodic lattices with traps, and the work of Sanders, Ruijgrok, and ten Bosch on random walks on two-dimensional finite lattices with traps. Our results are used to discuss the concept of reduction of dimensionality as introduced by Adam and Delbrueck in their study of biological diffusion processes.</description><identifier>ISSN: 0163-1829</identifier><identifier>DOI: 10.1103/PhysRevB.21.1400</identifier><language>eng</language><publisher>United States</publisher><subject>656000 - Condensed Matter Physics ; BOUNDARY CONDITIONS ; BOUNDARY-VALUE PROBLEMS ; CHEMICAL REACTIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTAL LATTICES ; CRYSTAL STRUCTURE ; DIFFUSION ; MONTE CARLO METHOD ; SIZE ; TRAPS</subject><ispartof>Phys. Rev., B: Condens. Matter; (United States), 1980-01, Vol.21 (4), p.1400-1407</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-1016e710e316781d7bd3695ec05a6c0895ebecd4b0618e708956135fa6ce93623</citedby><cites>FETCH-LOGICAL-c268t-1016e710e316781d7bd3695ec05a6c0895ebecd4b0618e708956135fa6ce93623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5584994$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hatlee, Michael D.</creatorcontrib><creatorcontrib>Kozak, John J.</creatorcontrib><creatorcontrib>Department of Chemistry and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556</creatorcontrib><title>Random walks on finite lattices with traps</title><title>Phys. Rev., B: Condens. Matter; (United States)</title><description>We consider dissipative processes involving both chemical reaction and physical diffusion in systems for which the influence of boundaries and system size on the dynamics cannot be neglected. We report the results of Monte Carlo simulations on an irreversible reaction in a confined system subject to two sorts of finite boundary conditions. The problem is posed in such a way as to take maximal advantage of two earlier studies: Montroll's work on random walks on d-dimensional periodic lattices with traps, and the work of Sanders, Ruijgrok, and ten Bosch on random walks on two-dimensional finite lattices with traps. Our results are used to discuss the concept of reduction of dimensionality as introduced by Adam and Delbrueck in their study of biological diffusion processes.</description><subject>656000 - Condensed Matter Physics</subject><subject>BOUNDARY CONDITIONS</subject><subject>BOUNDARY-VALUE PROBLEMS</subject><subject>CHEMICAL REACTIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL STRUCTURE</subject><subject>DIFFUSION</subject><subject>MONTE CARLO METHOD</subject><subject>SIZE</subject><subject>TRAPS</subject><issn>0163-1829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNo1kEFLxDAQhXNQcF29ewwehdZM0qbJURddhQVl0XNI0ymNdtulCS77701ZncsbZh7zho-QG2A5ABP3790xbPHnMeeQQ8HYGVkwkCIDxfUFuQzhi6XiUi_I3dYOzbijB9t_BzoOtPWDj0h7G6N3GOjBx47Gye7DFTlvbR_w-k-X5PP56WP1km3e1q-rh03muFQxgxSFFTAUICsFTVU3QuoSHSutdEyltkbXFDWToLCaBxJE2aYlaiG5WJLb090xRG-CS--4zo3DgC6aslSF1kUysZPJTWMIE7ZmP_mdnY4GmJkhmH8IhoOZIYhfF4tRoQ</recordid><startdate>19800101</startdate><enddate>19800101</enddate><creator>Hatlee, Michael D.</creator><creator>Kozak, John J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19800101</creationdate><title>Random walks on finite lattices with traps</title><author>Hatlee, Michael D. ; Kozak, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-1016e710e316781d7bd3695ec05a6c0895ebecd4b0618e708956135fa6ce93623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>656000 - Condensed Matter Physics</topic><topic>BOUNDARY CONDITIONS</topic><topic>BOUNDARY-VALUE PROBLEMS</topic><topic>CHEMICAL REACTIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL STRUCTURE</topic><topic>DIFFUSION</topic><topic>MONTE CARLO METHOD</topic><topic>SIZE</topic><topic>TRAPS</topic><toplevel>online_resources</toplevel><creatorcontrib>Hatlee, Michael D.</creatorcontrib><creatorcontrib>Kozak, John J.</creatorcontrib><creatorcontrib>Department of Chemistry and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev., B: Condens. Matter; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatlee, Michael D.</au><au>Kozak, John J.</au><aucorp>Department of Chemistry and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random walks on finite lattices with traps</atitle><jtitle>Phys. Rev., B: Condens. Matter; (United States)</jtitle><date>1980-01-01</date><risdate>1980</risdate><volume>21</volume><issue>4</issue><spage>1400</spage><epage>1407</epage><pages>1400-1407</pages><issn>0163-1829</issn><abstract>We consider dissipative processes involving both chemical reaction and physical diffusion in systems for which the influence of boundaries and system size on the dynamics cannot be neglected. We report the results of Monte Carlo simulations on an irreversible reaction in a confined system subject to two sorts of finite boundary conditions. The problem is posed in such a way as to take maximal advantage of two earlier studies: Montroll's work on random walks on d-dimensional periodic lattices with traps, and the work of Sanders, Ruijgrok, and ten Bosch on random walks on two-dimensional finite lattices with traps. Our results are used to discuss the concept of reduction of dimensionality as introduced by Adam and Delbrueck in their study of biological diffusion processes.</abstract><cop>United States</cop><doi>10.1103/PhysRevB.21.1400</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-1829
ispartof Phys. Rev., B: Condens. Matter; (United States), 1980-01, Vol.21 (4), p.1400-1407
issn 0163-1829
language eng
recordid cdi_crossref_primary_10_1103_PhysRevB_21_1400
source American Physical Society Journals
subjects 656000 - Condensed Matter Physics
BOUNDARY CONDITIONS
BOUNDARY-VALUE PROBLEMS
CHEMICAL REACTIONS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRYSTAL LATTICES
CRYSTAL STRUCTURE
DIFFUSION
MONTE CARLO METHOD
SIZE
TRAPS
title Random walks on finite lattices with traps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20walks%20on%20finite%20lattices%20with%20traps&rft.jtitle=Phys.%20Rev.,%20B:%20Condens.%20Matter;%20(United%20States)&rft.au=Hatlee,%20Michael%20D.&rft.aucorp=Department%20of%20Chemistry%20and%20Radiation%20Laboratory,%20University%20of%20Notre%20Dame,%20Notre%20Dame,%20Indiana%2046556&rft.date=1980-01-01&rft.volume=21&rft.issue=4&rft.spage=1400&rft.epage=1407&rft.pages=1400-1407&rft.issn=0163-1829&rft_id=info:doi/10.1103/PhysRevB.21.1400&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevB_21_1400%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true