Random walks on finite lattices with traps
We consider dissipative processes involving both chemical reaction and physical diffusion in systems for which the influence of boundaries and system size on the dynamics cannot be neglected. We report the results of Monte Carlo simulations on an irreversible reaction in a confined system subject to...
Gespeichert in:
Veröffentlicht in: | Phys. Rev., B: Condens. Matter; (United States) B: Condens. Matter; (United States), 1980-01, Vol.21 (4), p.1400-1407 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1407 |
---|---|
container_issue | 4 |
container_start_page | 1400 |
container_title | Phys. Rev., B: Condens. Matter; (United States) |
container_volume | 21 |
creator | Hatlee, Michael D. Kozak, John J. |
description | We consider dissipative processes involving both chemical reaction and physical diffusion in systems for which the influence of boundaries and system size on the dynamics cannot be neglected. We report the results of Monte Carlo simulations on an irreversible reaction in a confined system subject to two sorts of finite boundary conditions. The problem is posed in such a way as to take maximal advantage of two earlier studies: Montroll's work on random walks on d-dimensional periodic lattices with traps, and the work of Sanders, Ruijgrok, and ten Bosch on random walks on two-dimensional finite lattices with traps. Our results are used to discuss the concept of reduction of dimensionality as introduced by Adam and Delbrueck in their study of biological diffusion processes. |
doi_str_mv | 10.1103/PhysRevB.21.1400 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevB_21_1400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevB_21_1400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-1016e710e316781d7bd3695ec05a6c0895ebecd4b0618e708956135fa6ce93623</originalsourceid><addsrcrecordid>eNo1kEFLxDAQhXNQcF29ewwehdZM0qbJURddhQVl0XNI0ymNdtulCS77701ZncsbZh7zho-QG2A5ABP3790xbPHnMeeQQ8HYGVkwkCIDxfUFuQzhi6XiUi_I3dYOzbijB9t_BzoOtPWDj0h7G6N3GOjBx47Gye7DFTlvbR_w-k-X5PP56WP1km3e1q-rh03muFQxgxSFFTAUICsFTVU3QuoSHSutdEyltkbXFDWToLCaBxJE2aYlaiG5WJLb090xRG-CS--4zo3DgC6aslSF1kUysZPJTWMIE7ZmP_mdnY4GmJkhmH8IhoOZIYhfF4tRoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random walks on finite lattices with traps</title><source>American Physical Society Journals</source><creator>Hatlee, Michael D. ; Kozak, John J.</creator><creatorcontrib>Hatlee, Michael D. ; Kozak, John J. ; Department of Chemistry and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556</creatorcontrib><description>We consider dissipative processes involving both chemical reaction and physical diffusion in systems for which the influence of boundaries and system size on the dynamics cannot be neglected. We report the results of Monte Carlo simulations on an irreversible reaction in a confined system subject to two sorts of finite boundary conditions. The problem is posed in such a way as to take maximal advantage of two earlier studies: Montroll's work on random walks on d-dimensional periodic lattices with traps, and the work of Sanders, Ruijgrok, and ten Bosch on random walks on two-dimensional finite lattices with traps. Our results are used to discuss the concept of reduction of dimensionality as introduced by Adam and Delbrueck in their study of biological diffusion processes.</description><identifier>ISSN: 0163-1829</identifier><identifier>DOI: 10.1103/PhysRevB.21.1400</identifier><language>eng</language><publisher>United States</publisher><subject>656000 - Condensed Matter Physics ; BOUNDARY CONDITIONS ; BOUNDARY-VALUE PROBLEMS ; CHEMICAL REACTIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTAL LATTICES ; CRYSTAL STRUCTURE ; DIFFUSION ; MONTE CARLO METHOD ; SIZE ; TRAPS</subject><ispartof>Phys. Rev., B: Condens. Matter; (United States), 1980-01, Vol.21 (4), p.1400-1407</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-1016e710e316781d7bd3695ec05a6c0895ebecd4b0618e708956135fa6ce93623</citedby><cites>FETCH-LOGICAL-c268t-1016e710e316781d7bd3695ec05a6c0895ebecd4b0618e708956135fa6ce93623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5584994$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hatlee, Michael D.</creatorcontrib><creatorcontrib>Kozak, John J.</creatorcontrib><creatorcontrib>Department of Chemistry and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556</creatorcontrib><title>Random walks on finite lattices with traps</title><title>Phys. Rev., B: Condens. Matter; (United States)</title><description>We consider dissipative processes involving both chemical reaction and physical diffusion in systems for which the influence of boundaries and system size on the dynamics cannot be neglected. We report the results of Monte Carlo simulations on an irreversible reaction in a confined system subject to two sorts of finite boundary conditions. The problem is posed in such a way as to take maximal advantage of two earlier studies: Montroll's work on random walks on d-dimensional periodic lattices with traps, and the work of Sanders, Ruijgrok, and ten Bosch on random walks on two-dimensional finite lattices with traps. Our results are used to discuss the concept of reduction of dimensionality as introduced by Adam and Delbrueck in their study of biological diffusion processes.</description><subject>656000 - Condensed Matter Physics</subject><subject>BOUNDARY CONDITIONS</subject><subject>BOUNDARY-VALUE PROBLEMS</subject><subject>CHEMICAL REACTIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL STRUCTURE</subject><subject>DIFFUSION</subject><subject>MONTE CARLO METHOD</subject><subject>SIZE</subject><subject>TRAPS</subject><issn>0163-1829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNo1kEFLxDAQhXNQcF29ewwehdZM0qbJURddhQVl0XNI0ymNdtulCS77701ZncsbZh7zho-QG2A5ABP3790xbPHnMeeQQ8HYGVkwkCIDxfUFuQzhi6XiUi_I3dYOzbijB9t_BzoOtPWDj0h7G6N3GOjBx47Gye7DFTlvbR_w-k-X5PP56WP1km3e1q-rh03muFQxgxSFFTAUICsFTVU3QuoSHSutdEyltkbXFDWToLCaBxJE2aYlaiG5WJLb090xRG-CS--4zo3DgC6aslSF1kUysZPJTWMIE7ZmP_mdnY4GmJkhmH8IhoOZIYhfF4tRoQ</recordid><startdate>19800101</startdate><enddate>19800101</enddate><creator>Hatlee, Michael D.</creator><creator>Kozak, John J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19800101</creationdate><title>Random walks on finite lattices with traps</title><author>Hatlee, Michael D. ; Kozak, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-1016e710e316781d7bd3695ec05a6c0895ebecd4b0618e708956135fa6ce93623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>656000 - Condensed Matter Physics</topic><topic>BOUNDARY CONDITIONS</topic><topic>BOUNDARY-VALUE PROBLEMS</topic><topic>CHEMICAL REACTIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL STRUCTURE</topic><topic>DIFFUSION</topic><topic>MONTE CARLO METHOD</topic><topic>SIZE</topic><topic>TRAPS</topic><toplevel>online_resources</toplevel><creatorcontrib>Hatlee, Michael D.</creatorcontrib><creatorcontrib>Kozak, John J.</creatorcontrib><creatorcontrib>Department of Chemistry and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev., B: Condens. Matter; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatlee, Michael D.</au><au>Kozak, John J.</au><aucorp>Department of Chemistry and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random walks on finite lattices with traps</atitle><jtitle>Phys. Rev., B: Condens. Matter; (United States)</jtitle><date>1980-01-01</date><risdate>1980</risdate><volume>21</volume><issue>4</issue><spage>1400</spage><epage>1407</epage><pages>1400-1407</pages><issn>0163-1829</issn><abstract>We consider dissipative processes involving both chemical reaction and physical diffusion in systems for which the influence of boundaries and system size on the dynamics cannot be neglected. We report the results of Monte Carlo simulations on an irreversible reaction in a confined system subject to two sorts of finite boundary conditions. The problem is posed in such a way as to take maximal advantage of two earlier studies: Montroll's work on random walks on d-dimensional periodic lattices with traps, and the work of Sanders, Ruijgrok, and ten Bosch on random walks on two-dimensional finite lattices with traps. Our results are used to discuss the concept of reduction of dimensionality as introduced by Adam and Delbrueck in their study of biological diffusion processes.</abstract><cop>United States</cop><doi>10.1103/PhysRevB.21.1400</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-1829 |
ispartof | Phys. Rev., B: Condens. Matter; (United States), 1980-01, Vol.21 (4), p.1400-1407 |
issn | 0163-1829 |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRevB_21_1400 |
source | American Physical Society Journals |
subjects | 656000 - Condensed Matter Physics BOUNDARY CONDITIONS BOUNDARY-VALUE PROBLEMS CHEMICAL REACTIONS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CRYSTAL LATTICES CRYSTAL STRUCTURE DIFFUSION MONTE CARLO METHOD SIZE TRAPS |
title | Random walks on finite lattices with traps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20walks%20on%20finite%20lattices%20with%20traps&rft.jtitle=Phys.%20Rev.,%20B:%20Condens.%20Matter;%20(United%20States)&rft.au=Hatlee,%20Michael%20D.&rft.aucorp=Department%20of%20Chemistry%20and%20Radiation%20Laboratory,%20University%20of%20Notre%20Dame,%20Notre%20Dame,%20Indiana%2046556&rft.date=1980-01-01&rft.volume=21&rft.issue=4&rft.spage=1400&rft.epage=1407&rft.pages=1400-1407&rft.issn=0163-1829&rft_id=info:doi/10.1103/PhysRevB.21.1400&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevB_21_1400%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |