Maximally entangled and gigahertz-clocked on-demand photon pair source

We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlens-enhanced devices in conjunction with their substantial brightness, raw entanglement fidelities of up to 0.95 +/- 0....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-02, Vol.103 (7), p.1, Article 075413
Hauptverfasser: Hopfmann, Caspar, Nie, Weijie, Sharma, Nand Lal, Weigelt, Carmen, Ding, Fei, Schmidt, Oliver G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1
container_title Physical review. B
container_volume 103
creator Hopfmann, Caspar
Nie, Weijie
Sharma, Nand Lal
Weigelt, Carmen
Ding, Fei
Schmidt, Oliver G.
description We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlens-enhanced devices in conjunction with their substantial brightness, raw entanglement fidelities of up to 0.95 +/- 0.01 and postselected photon indistinguishabilities of up to 0.93 +/- 0.01, the suitability for quantum repeater based long range quantum entanglement distribution schemes is shown. Comprehensive investigations of a complete set of polarization selective two-photon correlations facilitate an innovative method to determine the extraction and excitation efficiencies directly, as opposed to commonly employed indirect techniques. Additionally, time-resolved analysis of Hong-Ou-Mandel interference traces reveal an alternative approach to the investigation of pure photon dephasing.
doi_str_mv 10.1103/PhysRevB.103.075413
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevB_103_075413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495503847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7a1178a273319795942cfc039c734899506600d8f8019572d9623da8e69b6eab3</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIVKVfwCUSR5SyjhM7PkJEC1IRCME5ch2nTUntYLtA-XocBXrmtK-Znd1B6BzDFGMgV0_rvXtWHzfTUEyBZSkmR2iUpJTHnFN-fMgzOEUT5zYAgClwBnyEZg_iq9mKtt1HSnuhV62qIqGraNWsxFpZ_x3L1si30DU6rtS2n3Vr442OOtHYyJmdleoMndSidWryG8fodXb7UtzFi8f5fXG9iCVJmI-ZwJjlImGEYM54xtNE1hIIl4ykeX8hpQBVXueAecaSitOEVCJXlC-pEksyRhfD3s6a951yvtwEfR0kyyTlWQYkT1lAkQElrXHOqrrsbHjS7ksMZe9Z-edZ2ReDZ4F1ObA-1dLUTjZKS3VgBtMopikO9D4N6Pz_6KLxwjdGF2anPfkB1yeAGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495503847</pqid></control><display><type>article</type><title>Maximally entangled and gigahertz-clocked on-demand photon pair source</title><source>American Physical Society Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Hopfmann, Caspar ; Nie, Weijie ; Sharma, Nand Lal ; Weigelt, Carmen ; Ding, Fei ; Schmidt, Oliver G.</creator><creatorcontrib>Hopfmann, Caspar ; Nie, Weijie ; Sharma, Nand Lal ; Weigelt, Carmen ; Ding, Fei ; Schmidt, Oliver G.</creatorcontrib><description>We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlens-enhanced devices in conjunction with their substantial brightness, raw entanglement fidelities of up to 0.95 +/- 0.01 and postselected photon indistinguishabilities of up to 0.93 +/- 0.01, the suitability for quantum repeater based long range quantum entanglement distribution schemes is shown. Comprehensive investigations of a complete set of polarization selective two-photon correlations facilitate an innovative method to determine the extraction and excitation efficiencies directly, as opposed to commonly employed indirect techniques. Additionally, time-resolved analysis of Hong-Ou-Mandel interference traces reveal an alternative approach to the investigation of pure photon dephasing.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.075413</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Excitation ; Materials Science ; Materials Science, Multidisciplinary ; Microlenses ; Photons ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Quantum dots ; Quantum entanglement ; Quantum mechanics ; Science &amp; Technology ; Technology</subject><ispartof>Physical review. B, 2021-02, Vol.103 (7), p.1, Article 075413</ispartof><rights>Copyright American Physical Society Feb 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000616411100006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c327t-7a1178a273319795942cfc039c734899506600d8f8019572d9623da8e69b6eab3</citedby><cites>FETCH-LOGICAL-c327t-7a1178a273319795942cfc039c734899506600d8f8019572d9623da8e69b6eab3</cites><orcidid>0000-0001-9503-8367 ; 0000-0001-8205-5686 ; 0000-0003-2923-4815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Hopfmann, Caspar</creatorcontrib><creatorcontrib>Nie, Weijie</creatorcontrib><creatorcontrib>Sharma, Nand Lal</creatorcontrib><creatorcontrib>Weigelt, Carmen</creatorcontrib><creatorcontrib>Ding, Fei</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><title>Maximally entangled and gigahertz-clocked on-demand photon pair source</title><title>Physical review. B</title><addtitle>PHYS REV B</addtitle><description>We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlens-enhanced devices in conjunction with their substantial brightness, raw entanglement fidelities of up to 0.95 +/- 0.01 and postselected photon indistinguishabilities of up to 0.93 +/- 0.01, the suitability for quantum repeater based long range quantum entanglement distribution schemes is shown. Comprehensive investigations of a complete set of polarization selective two-photon correlations facilitate an innovative method to determine the extraction and excitation efficiencies directly, as opposed to commonly employed indirect techniques. Additionally, time-resolved analysis of Hong-Ou-Mandel interference traces reveal an alternative approach to the investigation of pure photon dephasing.</description><subject>Excitation</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Microlenses</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Quantum dots</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNUMtOwzAQtBBIVKVfwCUSR5SyjhM7PkJEC1IRCME5ch2nTUntYLtA-XocBXrmtK-Znd1B6BzDFGMgV0_rvXtWHzfTUEyBZSkmR2iUpJTHnFN-fMgzOEUT5zYAgClwBnyEZg_iq9mKtt1HSnuhV62qIqGraNWsxFpZ_x3L1si30DU6rtS2n3Vr442OOtHYyJmdleoMndSidWryG8fodXb7UtzFi8f5fXG9iCVJmI-ZwJjlImGEYM54xtNE1hIIl4ykeX8hpQBVXueAecaSitOEVCJXlC-pEksyRhfD3s6a951yvtwEfR0kyyTlWQYkT1lAkQElrXHOqrrsbHjS7ksMZe9Z-edZ2ReDZ4F1ObA-1dLUTjZKS3VgBtMopikO9D4N6Pz_6KLxwjdGF2anPfkB1yeAGA</recordid><startdate>20210209</startdate><enddate>20210209</enddate><creator>Hopfmann, Caspar</creator><creator>Nie, Weijie</creator><creator>Sharma, Nand Lal</creator><creator>Weigelt, Carmen</creator><creator>Ding, Fei</creator><creator>Schmidt, Oliver G.</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9503-8367</orcidid><orcidid>https://orcid.org/0000-0001-8205-5686</orcidid><orcidid>https://orcid.org/0000-0003-2923-4815</orcidid></search><sort><creationdate>20210209</creationdate><title>Maximally entangled and gigahertz-clocked on-demand photon pair source</title><author>Hopfmann, Caspar ; Nie, Weijie ; Sharma, Nand Lal ; Weigelt, Carmen ; Ding, Fei ; Schmidt, Oliver G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7a1178a273319795942cfc039c734899506600d8f8019572d9623da8e69b6eab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Excitation</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Microlenses</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Quantum dots</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hopfmann, Caspar</creatorcontrib><creatorcontrib>Nie, Weijie</creatorcontrib><creatorcontrib>Sharma, Nand Lal</creatorcontrib><creatorcontrib>Weigelt, Carmen</creatorcontrib><creatorcontrib>Ding, Fei</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopfmann, Caspar</au><au>Nie, Weijie</au><au>Sharma, Nand Lal</au><au>Weigelt, Carmen</au><au>Ding, Fei</au><au>Schmidt, Oliver G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximally entangled and gigahertz-clocked on-demand photon pair source</atitle><jtitle>Physical review. B</jtitle><stitle>PHYS REV B</stitle><date>2021-02-09</date><risdate>2021</risdate><volume>103</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>075413</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlens-enhanced devices in conjunction with their substantial brightness, raw entanglement fidelities of up to 0.95 +/- 0.01 and postselected photon indistinguishabilities of up to 0.93 +/- 0.01, the suitability for quantum repeater based long range quantum entanglement distribution schemes is shown. Comprehensive investigations of a complete set of polarization selective two-photon correlations facilitate an innovative method to determine the extraction and excitation efficiencies directly, as opposed to commonly employed indirect techniques. Additionally, time-resolved analysis of Hong-Ou-Mandel interference traces reveal an alternative approach to the investigation of pure photon dephasing.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><doi>10.1103/PhysRevB.103.075413</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9503-8367</orcidid><orcidid>https://orcid.org/0000-0001-8205-5686</orcidid><orcidid>https://orcid.org/0000-0003-2923-4815</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-02, Vol.103 (7), p.1, Article 075413
issn 2469-9950
2469-9969
language eng
recordid cdi_crossref_primary_10_1103_PhysRevB_103_075413
source American Physical Society Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Excitation
Materials Science
Materials Science, Multidisciplinary
Microlenses
Photons
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Quantum dots
Quantum entanglement
Quantum mechanics
Science & Technology
Technology
title Maximally entangled and gigahertz-clocked on-demand photon pair source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximally%20entangled%20and%20gigahertz-clocked%20on-demand%20photon%20pair%20source&rft.jtitle=Physical%20review.%20B&rft.au=Hopfmann,%20Caspar&rft.date=2021-02-09&rft.volume=103&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=075413&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.075413&rft_dat=%3Cproquest_cross%3E2495503847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495503847&rft_id=info:pmid/&rfr_iscdi=true