Absence of two-body delocalization transitions in the two-dimensional Anderson-Hubbard model
We investigate Anderson localization of two particles moving in a two-dimensional (2D) disordered lattice and coupled by contact interactions. Based on transmission-amplitude calculations for relatively large strip-shaped grids, we find that all pair states are localized in lattices of infinite size...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-10, Vol.102 (14), Article 144201 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Physical review. B |
container_volume | 102 |
creator | Stellin, Filippo Orso, Giuliano |
description | We investigate Anderson localization of two particles moving in a two-dimensional (2D) disordered lattice and coupled by contact interactions. Based on transmission-amplitude calculations for relatively large strip-shaped grids, we find that all pair states are localized in lattices of infinite size. In particular, we show that previous claims of an interaction-induced mobility edge are biased by severe finite-size effects. The localization length of a pair with zero total energy exhibits a nonmonotonic behavior as a function of the interaction strength, characterized by an exponential enhancement in the weakly interacting regime. Our findings also suggest that the many-body mobility edge of the 2D Anderson-Hubbard model disappears in the zero-density limit, irrespective of the (bosonic or fermionic) quantum statistics of the particles. |
doi_str_mv | 10.1103/PhysRevB.102.144201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevB_102_144201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470403549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-570f80527bd15f9f3d2738a34df7f68bd18e001ce9daf457ffec23e782644b013</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS8Bnztv_rRpHudQJwwU0TehpM0N6-iamXTK_PRmTn265_44HA6HkEsGU8ZAXD-t9vEZP26mDPiUScmBnZARl4XOtC706b_O4ZxMYlwDACtAK9Aj8jarI_YNUu_o8Omz2ts9tdj5xnTtlxla39MhmD62Bxlpm94V_lhtu8HEfW86Ousthuj7bLGraxMs3fgUckHOnOkiTn7vmLze3b7MF9ny8f5hPltmDVdqyHIFroScq9qy3GknLFeiNEJap1xRJlpiqtygtsbJXDmHDReoSl5IWQMTY3J1zN0G_77DOFRrvwupV6y4VCBB5FInlzi6muBjDOiqbWg3JuwrBtVhyepvyQR4dVxSfAMN_mlL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470403549</pqid></control><display><type>article</type><title>Absence of two-body delocalization transitions in the two-dimensional Anderson-Hubbard model</title><source>American Physical Society Journals</source><creator>Stellin, Filippo ; Orso, Giuliano</creator><creatorcontrib>Stellin, Filippo ; Orso, Giuliano</creatorcontrib><description>We investigate Anderson localization of two particles moving in a two-dimensional (2D) disordered lattice and coupled by contact interactions. Based on transmission-amplitude calculations for relatively large strip-shaped grids, we find that all pair states are localized in lattices of infinite size. In particular, we show that previous claims of an interaction-induced mobility edge are biased by severe finite-size effects. The localization length of a pair with zero total energy exhibits a nonmonotonic behavior as a function of the interaction strength, characterized by an exponential enhancement in the weakly interacting regime. Our findings also suggest that the many-body mobility edge of the 2D Anderson-Hubbard model disappears in the zero-density limit, irrespective of the (bosonic or fermionic) quantum statistics of the particles.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.144201</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anderson localization ; Lattices ; Quantum statistics ; Size effects ; Two dimensional models</subject><ispartof>Physical review. B, 2020-10, Vol.102 (14), Article 144201</ispartof><rights>Copyright American Physical Society Oct 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-570f80527bd15f9f3d2738a34df7f68bd18e001ce9daf457ffec23e782644b013</citedby><cites>FETCH-LOGICAL-c277t-570f80527bd15f9f3d2738a34df7f68bd18e001ce9daf457ffec23e782644b013</cites><orcidid>0000-0002-0816-9084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Stellin, Filippo</creatorcontrib><creatorcontrib>Orso, Giuliano</creatorcontrib><title>Absence of two-body delocalization transitions in the two-dimensional Anderson-Hubbard model</title><title>Physical review. B</title><description>We investigate Anderson localization of two particles moving in a two-dimensional (2D) disordered lattice and coupled by contact interactions. Based on transmission-amplitude calculations for relatively large strip-shaped grids, we find that all pair states are localized in lattices of infinite size. In particular, we show that previous claims of an interaction-induced mobility edge are biased by severe finite-size effects. The localization length of a pair with zero total energy exhibits a nonmonotonic behavior as a function of the interaction strength, characterized by an exponential enhancement in the weakly interacting regime. Our findings also suggest that the many-body mobility edge of the 2D Anderson-Hubbard model disappears in the zero-density limit, irrespective of the (bosonic or fermionic) quantum statistics of the particles.</description><subject>Anderson localization</subject><subject>Lattices</subject><subject>Quantum statistics</subject><subject>Size effects</subject><subject>Two dimensional models</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS8Bnztv_rRpHudQJwwU0TehpM0N6-iamXTK_PRmTn265_44HA6HkEsGU8ZAXD-t9vEZP26mDPiUScmBnZARl4XOtC706b_O4ZxMYlwDACtAK9Aj8jarI_YNUu_o8Omz2ts9tdj5xnTtlxla39MhmD62Bxlpm94V_lhtu8HEfW86Ousthuj7bLGraxMs3fgUckHOnOkiTn7vmLze3b7MF9ny8f5hPltmDVdqyHIFroScq9qy3GknLFeiNEJap1xRJlpiqtygtsbJXDmHDReoSl5IWQMTY3J1zN0G_77DOFRrvwupV6y4VCBB5FInlzi6muBjDOiqbWg3JuwrBtVhyepvyQR4dVxSfAMN_mlL</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Stellin, Filippo</creator><creator>Orso, Giuliano</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0816-9084</orcidid></search><sort><creationdate>20201013</creationdate><title>Absence of two-body delocalization transitions in the two-dimensional Anderson-Hubbard model</title><author>Stellin, Filippo ; Orso, Giuliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-570f80527bd15f9f3d2738a34df7f68bd18e001ce9daf457ffec23e782644b013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anderson localization</topic><topic>Lattices</topic><topic>Quantum statistics</topic><topic>Size effects</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stellin, Filippo</creatorcontrib><creatorcontrib>Orso, Giuliano</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stellin, Filippo</au><au>Orso, Giuliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absence of two-body delocalization transitions in the two-dimensional Anderson-Hubbard model</atitle><jtitle>Physical review. B</jtitle><date>2020-10-13</date><risdate>2020</risdate><volume>102</volume><issue>14</issue><artnum>144201</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We investigate Anderson localization of two particles moving in a two-dimensional (2D) disordered lattice and coupled by contact interactions. Based on transmission-amplitude calculations for relatively large strip-shaped grids, we find that all pair states are localized in lattices of infinite size. In particular, we show that previous claims of an interaction-induced mobility edge are biased by severe finite-size effects. The localization length of a pair with zero total energy exhibits a nonmonotonic behavior as a function of the interaction strength, characterized by an exponential enhancement in the weakly interacting regime. Our findings also suggest that the many-body mobility edge of the 2D Anderson-Hubbard model disappears in the zero-density limit, irrespective of the (bosonic or fermionic) quantum statistics of the particles.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.144201</doi><orcidid>https://orcid.org/0000-0002-0816-9084</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-10, Vol.102 (14), Article 144201 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRevB_102_144201 |
source | American Physical Society Journals |
subjects | Anderson localization Lattices Quantum statistics Size effects Two dimensional models |
title | Absence of two-body delocalization transitions in the two-dimensional Anderson-Hubbard model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absence%20of%20two-body%20delocalization%20transitions%20in%20the%20two-dimensional%20Anderson-Hubbard%20model&rft.jtitle=Physical%20review.%20B&rft.au=Stellin,%20Filippo&rft.date=2020-10-13&rft.volume=102&rft.issue=14&rft.artnum=144201&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.144201&rft_dat=%3Cproquest_cross%3E2470403549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470403549&rft_id=info:pmid/&rfr_iscdi=true |