Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness

We study the optical reflectivity of real three-dimensional (3D) photonic band-gap crystals with increasing thickness. The crystals consist of GaAs plates with nanorod arrays that are assembled by an advanced stacking method into high-quality 3D woodpile structures. We observe intense and broad refl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-06, Vol.101 (23), p.1, Article 235303
Hauptverfasser: Tajiri, Takeyoshi, Takahashi, Shun, Harteveld, Cornelis A. M., Arakawa, Yasuhiko, Iwamoto, Satoshi, Vos, Willem L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 1
container_title Physical review. B
container_volume 101
creator Tajiri, Takeyoshi
Takahashi, Shun
Harteveld, Cornelis A. M.
Arakawa, Yasuhiko
Iwamoto, Satoshi
Vos, Willem L.
description We study the optical reflectivity of real three-dimensional (3D) photonic band-gap crystals with increasing thickness. The crystals consist of GaAs plates with nanorod arrays that are assembled by an advanced stacking method into high-quality 3D woodpile structures. We observe intense and broad reflectivity peaks with stop bands that correspond to a broad gap in the photonic band structures. The maximum reflectivity quickly reaches high values, even for a few crystal layers. Remarkably, the bandwidth of the stop bands hardly decreases with increasing crystal thickness, in good agreement with finite-difference time domain (FDTD) simulations. This behavior differs remarkably from the large changes observed earlier in weakly interacting 3D photonic crystals. The nearly constant bandwidth and high reflectivity are rationalized by multiple Bragg interference that occurs in strongly interacting photonic band-gap crystals, whereby the incident light scatters from multiple reciprocal lattice vectors simultaneously, in particular, from oblique ones that are parallel to a longer crystal dimension and thus experience hardly any finite-size effects. Our insights have favorable consequences for the application of 3D photonic band-gap crystals, notably since even thin structures reveal the full band-gap functionality, including devices that shield quantum bits from vacuum fluctuations.
doi_str_mv 10.1103/PhysRevB.101.235303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevB_101_235303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431253129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f7533eab54265a2f2b3e9b6e324de608bdce52fa609f046c57e8adfc423cf2133</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWGp_gZcFz1uTzCZtjrVoKxSUYs8hm53Y1HZ3TdLC_nu3VD0MM8y8Nzw-Qu4ZHTNG4fF928U1np7GjLIxBwEUrsiAF1LlSkl1_T8LektGMe4opUxSNaFqQDZrdHu0yZ986rLGZWkbEPPKH7COvqnNPluYWczabZOa2tusNHWVf5o2s6GLyezj2eR87RP2Xm-_aozxjty4_oSj3z4km5fnj_kyX70tXuezVW6hgJS7iQBAU4qCS2G44yWgKiUCLyqUdFpWFgV3pg_raCGtmODUVM4WHKzjDGBIHi5_29B8HzEmvWuOoQ8dNS-AcdGX6lVwUdnQxBjQ6Tb4gwmdZlSfEeo_hP2C6QtC-AHgjGcD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431253129</pqid></control><display><type>article</type><title>Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness</title><source>American Physical Society Journals</source><creator>Tajiri, Takeyoshi ; Takahashi, Shun ; Harteveld, Cornelis A. M. ; Arakawa, Yasuhiko ; Iwamoto, Satoshi ; Vos, Willem L.</creator><creatorcontrib>Tajiri, Takeyoshi ; Takahashi, Shun ; Harteveld, Cornelis A. M. ; Arakawa, Yasuhiko ; Iwamoto, Satoshi ; Vos, Willem L.</creatorcontrib><description>We study the optical reflectivity of real three-dimensional (3D) photonic band-gap crystals with increasing thickness. The crystals consist of GaAs plates with nanorod arrays that are assembled by an advanced stacking method into high-quality 3D woodpile structures. We observe intense and broad reflectivity peaks with stop bands that correspond to a broad gap in the photonic band structures. The maximum reflectivity quickly reaches high values, even for a few crystal layers. Remarkably, the bandwidth of the stop bands hardly decreases with increasing crystal thickness, in good agreement with finite-difference time domain (FDTD) simulations. This behavior differs remarkably from the large changes observed earlier in weakly interacting 3D photonic crystals. The nearly constant bandwidth and high reflectivity are rationalized by multiple Bragg interference that occurs in strongly interacting photonic band-gap crystals, whereby the incident light scatters from multiple reciprocal lattice vectors simultaneously, in particular, from oblique ones that are parallel to a longer crystal dimension and thus experience hardly any finite-size effects. Our insights have favorable consequences for the application of 3D photonic band-gap crystals, notably since even thin structures reveal the full band-gap functionality, including devices that shield quantum bits from vacuum fluctuations.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.235303</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Banded structure ; Crystal lattices ; Crystal structure ; Crystals ; Finite difference method ; Gallium arsenide ; Incident light ; Mathematical analysis ; Nanorods ; Photonic band gaps ; Photonic crystals ; Qubits (quantum computing) ; Reflectance ; Size effects ; Thickness</subject><ispartof>Physical review. B, 2020-06, Vol.101 (23), p.1, Article 235303</ispartof><rights>Copyright American Physical Society Jun 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-f7533eab54265a2f2b3e9b6e324de608bdce52fa609f046c57e8adfc423cf2133</citedby><cites>FETCH-LOGICAL-c343t-f7533eab54265a2f2b3e9b6e324de608bdce52fa609f046c57e8adfc423cf2133</cites><orcidid>0000-0003-3066-859X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Tajiri, Takeyoshi</creatorcontrib><creatorcontrib>Takahashi, Shun</creatorcontrib><creatorcontrib>Harteveld, Cornelis A. M.</creatorcontrib><creatorcontrib>Arakawa, Yasuhiko</creatorcontrib><creatorcontrib>Iwamoto, Satoshi</creatorcontrib><creatorcontrib>Vos, Willem L.</creatorcontrib><title>Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness</title><title>Physical review. B</title><description>We study the optical reflectivity of real three-dimensional (3D) photonic band-gap crystals with increasing thickness. The crystals consist of GaAs plates with nanorod arrays that are assembled by an advanced stacking method into high-quality 3D woodpile structures. We observe intense and broad reflectivity peaks with stop bands that correspond to a broad gap in the photonic band structures. The maximum reflectivity quickly reaches high values, even for a few crystal layers. Remarkably, the bandwidth of the stop bands hardly decreases with increasing crystal thickness, in good agreement with finite-difference time domain (FDTD) simulations. This behavior differs remarkably from the large changes observed earlier in weakly interacting 3D photonic crystals. The nearly constant bandwidth and high reflectivity are rationalized by multiple Bragg interference that occurs in strongly interacting photonic band-gap crystals, whereby the incident light scatters from multiple reciprocal lattice vectors simultaneously, in particular, from oblique ones that are parallel to a longer crystal dimension and thus experience hardly any finite-size effects. Our insights have favorable consequences for the application of 3D photonic band-gap crystals, notably since even thin structures reveal the full band-gap functionality, including devices that shield quantum bits from vacuum fluctuations.</description><subject>Banded structure</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Finite difference method</subject><subject>Gallium arsenide</subject><subject>Incident light</subject><subject>Mathematical analysis</subject><subject>Nanorods</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Qubits (quantum computing)</subject><subject>Reflectance</subject><subject>Size effects</subject><subject>Thickness</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWGp_gZcFz1uTzCZtjrVoKxSUYs8hm53Y1HZ3TdLC_nu3VD0MM8y8Nzw-Qu4ZHTNG4fF928U1np7GjLIxBwEUrsiAF1LlSkl1_T8LektGMe4opUxSNaFqQDZrdHu0yZ986rLGZWkbEPPKH7COvqnNPluYWczabZOa2tusNHWVf5o2s6GLyezj2eR87RP2Xm-_aozxjty4_oSj3z4km5fnj_kyX70tXuezVW6hgJS7iQBAU4qCS2G44yWgKiUCLyqUdFpWFgV3pg_raCGtmODUVM4WHKzjDGBIHi5_29B8HzEmvWuOoQ8dNS-AcdGX6lVwUdnQxBjQ6Tb4gwmdZlSfEeo_hP2C6QtC-AHgjGcD</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Tajiri, Takeyoshi</creator><creator>Takahashi, Shun</creator><creator>Harteveld, Cornelis A. M.</creator><creator>Arakawa, Yasuhiko</creator><creator>Iwamoto, Satoshi</creator><creator>Vos, Willem L.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3066-859X</orcidid></search><sort><creationdate>20200601</creationdate><title>Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness</title><author>Tajiri, Takeyoshi ; Takahashi, Shun ; Harteveld, Cornelis A. M. ; Arakawa, Yasuhiko ; Iwamoto, Satoshi ; Vos, Willem L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f7533eab54265a2f2b3e9b6e324de608bdce52fa609f046c57e8adfc423cf2133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Banded structure</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Finite difference method</topic><topic>Gallium arsenide</topic><topic>Incident light</topic><topic>Mathematical analysis</topic><topic>Nanorods</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Qubits (quantum computing)</topic><topic>Reflectance</topic><topic>Size effects</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tajiri, Takeyoshi</creatorcontrib><creatorcontrib>Takahashi, Shun</creatorcontrib><creatorcontrib>Harteveld, Cornelis A. M.</creatorcontrib><creatorcontrib>Arakawa, Yasuhiko</creatorcontrib><creatorcontrib>Iwamoto, Satoshi</creatorcontrib><creatorcontrib>Vos, Willem L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tajiri, Takeyoshi</au><au>Takahashi, Shun</au><au>Harteveld, Cornelis A. M.</au><au>Arakawa, Yasuhiko</au><au>Iwamoto, Satoshi</au><au>Vos, Willem L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness</atitle><jtitle>Physical review. B</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>101</volume><issue>23</issue><spage>1</spage><pages>1-</pages><artnum>235303</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study the optical reflectivity of real three-dimensional (3D) photonic band-gap crystals with increasing thickness. The crystals consist of GaAs plates with nanorod arrays that are assembled by an advanced stacking method into high-quality 3D woodpile structures. We observe intense and broad reflectivity peaks with stop bands that correspond to a broad gap in the photonic band structures. The maximum reflectivity quickly reaches high values, even for a few crystal layers. Remarkably, the bandwidth of the stop bands hardly decreases with increasing crystal thickness, in good agreement with finite-difference time domain (FDTD) simulations. This behavior differs remarkably from the large changes observed earlier in weakly interacting 3D photonic crystals. The nearly constant bandwidth and high reflectivity are rationalized by multiple Bragg interference that occurs in strongly interacting photonic band-gap crystals, whereby the incident light scatters from multiple reciprocal lattice vectors simultaneously, in particular, from oblique ones that are parallel to a longer crystal dimension and thus experience hardly any finite-size effects. Our insights have favorable consequences for the application of 3D photonic band-gap crystals, notably since even thin structures reveal the full band-gap functionality, including devices that shield quantum bits from vacuum fluctuations.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.235303</doi><orcidid>https://orcid.org/0000-0003-3066-859X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-06, Vol.101 (23), p.1, Article 235303
issn 2469-9950
2469-9969
language eng
recordid cdi_crossref_primary_10_1103_PhysRevB_101_235303
source American Physical Society Journals
subjects Banded structure
Crystal lattices
Crystal structure
Crystals
Finite difference method
Gallium arsenide
Incident light
Mathematical analysis
Nanorods
Photonic band gaps
Photonic crystals
Qubits (quantum computing)
Reflectance
Size effects
Thickness
title Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflectivity%20of%20three-dimensional%20GaAs%20photonic%20band-gap%20crystals%20of%20finite%20thickness&rft.jtitle=Physical%20review.%20B&rft.au=Tajiri,%20Takeyoshi&rft.date=2020-06-01&rft.volume=101&rft.issue=23&rft.spage=1&rft.pages=1-&rft.artnum=235303&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.235303&rft_dat=%3Cproquest_cross%3E2431253129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431253129&rft_id=info:pmid/&rfr_iscdi=true