Entanglement storage by classical fixed points in the two-axis countertwisting model
We analyze a scheme for self-trapping of entangled state by classical stable fixed points in the two-axis counter-twisting model. A characteristic feature of the two-axis counter-twisting Hamiltonian is the existence of the four stable center and two unstable saddle fixed points in their mean-field...
Gespeichert in:
Veröffentlicht in: | Physical review. A 2016-02, Vol.93 (2), Article 022331 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physical review. A |
container_volume | 93 |
creator | Kajtoch, Dariusz Pawłowski, Krzysztof Witkowska, Emilia |
description | We analyze a scheme for self-trapping of entangled state by classical stable fixed points in the two-axis counter-twisting model. A characteristic feature of the two-axis counter-twisting Hamiltonian is the existence of the four stable center and two unstable saddle fixed points in their mean-field phase space. The entangled state is generated dynamically from an initial spin coherent state located around an unstable saddle fixed point in a spin-1/2 ensemble. At an optimal moment of time the state is shifted to a position around stable center fixed points by a single rotation, where its dynamics and properties are approximately frozen. In this way one can store the entangled state of high value of the quantum Fisher information for further purposes. The effect of noise on the scheme is also discussed. |
doi_str_mv | 10.1103/PhysRevA.93.022331 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevA_93_022331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01904957v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-dbe5784373d937bc04d67b594be98161ef5d4a529469aa176cfca9e50b5d9ade3</originalsourceid><addsrcrecordid>eNo9kE9rAjEUxENpoWL9Aj3l2sPaZPNnfUcRWwtCS7HnkE3easq6K5tU3W9fxdbTDMPM4_Ej5JGzMedMPH9s-viJ--kYxJjluRD8hgxyqSEDEPL26nN9T0YxfjPGuALQQg_Iat4k26xr3GKTaExtZ9dIy5662sYYnK1pFY7o6a4NTYo0NDRtkKZDm9ljiNS1P03CLh1CTKFZ023rsX4gd5WtI47-dEi-Xuar2SJbvr--zabLzIlcpcyXqIqJFIXwIIrSMel1USqQJcKEa46V8tKqHE7vW8sL7SpnARUrlQfrUQzJ0-XuxtZm14Wt7XrT2mAW06U5Z4wDk6CKPT9180vXdW2MHVbXAWfmjNH8YzQgzAWj-AWH0Wip</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Entanglement storage by classical fixed points in the two-axis countertwisting model</title><source>American Physical Society Journals</source><creator>Kajtoch, Dariusz ; Pawłowski, Krzysztof ; Witkowska, Emilia</creator><creatorcontrib>Kajtoch, Dariusz ; Pawłowski, Krzysztof ; Witkowska, Emilia</creatorcontrib><description>We analyze a scheme for self-trapping of entangled state by classical stable fixed points in the two-axis counter-twisting model. A characteristic feature of the two-axis counter-twisting Hamiltonian is the existence of the four stable center and two unstable saddle fixed points in their mean-field phase space. The entangled state is generated dynamically from an initial spin coherent state located around an unstable saddle fixed point in a spin-1/2 ensemble. At an optimal moment of time the state is shifted to a position around stable center fixed points by a single rotation, where its dynamics and properties are approximately frozen. In this way one can store the entangled state of high value of the quantum Fisher information for further purposes. The effect of noise on the scheme is also discussed.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.93.022331</identifier><language>eng</language><subject>Condensed Matter ; Physics ; Quantum Gases ; Quantum Physics</subject><ispartof>Physical review. A, 2016-02, Vol.93 (2), Article 022331</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-dbe5784373d937bc04d67b594be98161ef5d4a529469aa176cfca9e50b5d9ade3</citedby><cites>FETCH-LOGICAL-c325t-dbe5784373d937bc04d67b594be98161ef5d4a529469aa176cfca9e50b5d9ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01904957$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kajtoch, Dariusz</creatorcontrib><creatorcontrib>Pawłowski, Krzysztof</creatorcontrib><creatorcontrib>Witkowska, Emilia</creatorcontrib><title>Entanglement storage by classical fixed points in the two-axis countertwisting model</title><title>Physical review. A</title><description>We analyze a scheme for self-trapping of entangled state by classical stable fixed points in the two-axis counter-twisting model. A characteristic feature of the two-axis counter-twisting Hamiltonian is the existence of the four stable center and two unstable saddle fixed points in their mean-field phase space. The entangled state is generated dynamically from an initial spin coherent state located around an unstable saddle fixed point in a spin-1/2 ensemble. At an optimal moment of time the state is shifted to a position around stable center fixed points by a single rotation, where its dynamics and properties are approximately frozen. In this way one can store the entangled state of high value of the quantum Fisher information for further purposes. The effect of noise on the scheme is also discussed.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Quantum Gases</subject><subject>Quantum Physics</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE9rAjEUxENpoWL9Aj3l2sPaZPNnfUcRWwtCS7HnkE3easq6K5tU3W9fxdbTDMPM4_Ej5JGzMedMPH9s-viJ--kYxJjluRD8hgxyqSEDEPL26nN9T0YxfjPGuALQQg_Iat4k26xr3GKTaExtZ9dIy5662sYYnK1pFY7o6a4NTYo0NDRtkKZDm9ljiNS1P03CLh1CTKFZ023rsX4gd5WtI47-dEi-Xuar2SJbvr--zabLzIlcpcyXqIqJFIXwIIrSMel1USqQJcKEa46V8tKqHE7vW8sL7SpnARUrlQfrUQzJ0-XuxtZm14Wt7XrT2mAW06U5Z4wDk6CKPT9180vXdW2MHVbXAWfmjNH8YzQgzAWj-AWH0Wip</recordid><startdate>20160226</startdate><enddate>20160226</enddate><creator>Kajtoch, Dariusz</creator><creator>Pawłowski, Krzysztof</creator><creator>Witkowska, Emilia</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20160226</creationdate><title>Entanglement storage by classical fixed points in the two-axis countertwisting model</title><author>Kajtoch, Dariusz ; Pawłowski, Krzysztof ; Witkowska, Emilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-dbe5784373d937bc04d67b594be98161ef5d4a529469aa176cfca9e50b5d9ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Quantum Gases</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kajtoch, Dariusz</creatorcontrib><creatorcontrib>Pawłowski, Krzysztof</creatorcontrib><creatorcontrib>Witkowska, Emilia</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kajtoch, Dariusz</au><au>Pawłowski, Krzysztof</au><au>Witkowska, Emilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement storage by classical fixed points in the two-axis countertwisting model</atitle><jtitle>Physical review. A</jtitle><date>2016-02-26</date><risdate>2016</risdate><volume>93</volume><issue>2</issue><artnum>022331</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>We analyze a scheme for self-trapping of entangled state by classical stable fixed points in the two-axis counter-twisting model. A characteristic feature of the two-axis counter-twisting Hamiltonian is the existence of the four stable center and two unstable saddle fixed points in their mean-field phase space. The entangled state is generated dynamically from an initial spin coherent state located around an unstable saddle fixed point in a spin-1/2 ensemble. At an optimal moment of time the state is shifted to a position around stable center fixed points by a single rotation, where its dynamics and properties are approximately frozen. In this way one can store the entangled state of high value of the quantum Fisher information for further purposes. The effect of noise on the scheme is also discussed.</abstract><doi>10.1103/PhysRevA.93.022331</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9926 |
ispartof | Physical review. A, 2016-02, Vol.93 (2), Article 022331 |
issn | 2469-9926 2469-9934 |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRevA_93_022331 |
source | American Physical Society Journals |
subjects | Condensed Matter Physics Quantum Gases Quantum Physics |
title | Entanglement storage by classical fixed points in the two-axis countertwisting model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20storage%20by%20classical%20fixed%20points%20in%20the%20two-axis%20countertwisting%20model&rft.jtitle=Physical%20review.%20A&rft.au=Kajtoch,%20Dariusz&rft.date=2016-02-26&rft.volume=93&rft.issue=2&rft.artnum=022331&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.93.022331&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01904957v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |