Entanglement storage by classical fixed points in the two-axis countertwisting model

We analyze a scheme for self-trapping of entangled state by classical stable fixed points in the two-axis counter-twisting model. A characteristic feature of the two-axis counter-twisting Hamiltonian is the existence of the four stable center and two unstable saddle fixed points in their mean-field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2016-02, Vol.93 (2), Article 022331
Hauptverfasser: Kajtoch, Dariusz, Pawłowski, Krzysztof, Witkowska, Emilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physical review. A
container_volume 93
creator Kajtoch, Dariusz
Pawłowski, Krzysztof
Witkowska, Emilia
description We analyze a scheme for self-trapping of entangled state by classical stable fixed points in the two-axis counter-twisting model. A characteristic feature of the two-axis counter-twisting Hamiltonian is the existence of the four stable center and two unstable saddle fixed points in their mean-field phase space. The entangled state is generated dynamically from an initial spin coherent state located around an unstable saddle fixed point in a spin-1/2 ensemble. At an optimal moment of time the state is shifted to a position around stable center fixed points by a single rotation, where its dynamics and properties are approximately frozen. In this way one can store the entangled state of high value of the quantum Fisher information for further purposes. The effect of noise on the scheme is also discussed.
doi_str_mv 10.1103/PhysRevA.93.022331
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevA_93_022331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01904957v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-dbe5784373d937bc04d67b594be98161ef5d4a529469aa176cfca9e50b5d9ade3</originalsourceid><addsrcrecordid>eNo9kE9rAjEUxENpoWL9Aj3l2sPaZPNnfUcRWwtCS7HnkE3easq6K5tU3W9fxdbTDMPM4_Ej5JGzMedMPH9s-viJ--kYxJjluRD8hgxyqSEDEPL26nN9T0YxfjPGuALQQg_Iat4k26xr3GKTaExtZ9dIy5662sYYnK1pFY7o6a4NTYo0NDRtkKZDm9ljiNS1P03CLh1CTKFZ023rsX4gd5WtI47-dEi-Xuar2SJbvr--zabLzIlcpcyXqIqJFIXwIIrSMel1USqQJcKEa46V8tKqHE7vW8sL7SpnARUrlQfrUQzJ0-XuxtZm14Wt7XrT2mAW06U5Z4wDk6CKPT9180vXdW2MHVbXAWfmjNH8YzQgzAWj-AWH0Wip</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Entanglement storage by classical fixed points in the two-axis countertwisting model</title><source>American Physical Society Journals</source><creator>Kajtoch, Dariusz ; Pawłowski, Krzysztof ; Witkowska, Emilia</creator><creatorcontrib>Kajtoch, Dariusz ; Pawłowski, Krzysztof ; Witkowska, Emilia</creatorcontrib><description>We analyze a scheme for self-trapping of entangled state by classical stable fixed points in the two-axis counter-twisting model. A characteristic feature of the two-axis counter-twisting Hamiltonian is the existence of the four stable center and two unstable saddle fixed points in their mean-field phase space. The entangled state is generated dynamically from an initial spin coherent state located around an unstable saddle fixed point in a spin-1/2 ensemble. At an optimal moment of time the state is shifted to a position around stable center fixed points by a single rotation, where its dynamics and properties are approximately frozen. In this way one can store the entangled state of high value of the quantum Fisher information for further purposes. The effect of noise on the scheme is also discussed.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.93.022331</identifier><language>eng</language><subject>Condensed Matter ; Physics ; Quantum Gases ; Quantum Physics</subject><ispartof>Physical review. A, 2016-02, Vol.93 (2), Article 022331</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-dbe5784373d937bc04d67b594be98161ef5d4a529469aa176cfca9e50b5d9ade3</citedby><cites>FETCH-LOGICAL-c325t-dbe5784373d937bc04d67b594be98161ef5d4a529469aa176cfca9e50b5d9ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01904957$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kajtoch, Dariusz</creatorcontrib><creatorcontrib>Pawłowski, Krzysztof</creatorcontrib><creatorcontrib>Witkowska, Emilia</creatorcontrib><title>Entanglement storage by classical fixed points in the two-axis countertwisting model</title><title>Physical review. A</title><description>We analyze a scheme for self-trapping of entangled state by classical stable fixed points in the two-axis counter-twisting model. A characteristic feature of the two-axis counter-twisting Hamiltonian is the existence of the four stable center and two unstable saddle fixed points in their mean-field phase space. The entangled state is generated dynamically from an initial spin coherent state located around an unstable saddle fixed point in a spin-1/2 ensemble. At an optimal moment of time the state is shifted to a position around stable center fixed points by a single rotation, where its dynamics and properties are approximately frozen. In this way one can store the entangled state of high value of the quantum Fisher information for further purposes. The effect of noise on the scheme is also discussed.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Quantum Gases</subject><subject>Quantum Physics</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE9rAjEUxENpoWL9Aj3l2sPaZPNnfUcRWwtCS7HnkE3easq6K5tU3W9fxdbTDMPM4_Ej5JGzMedMPH9s-viJ--kYxJjluRD8hgxyqSEDEPL26nN9T0YxfjPGuALQQg_Iat4k26xr3GKTaExtZ9dIy5662sYYnK1pFY7o6a4NTYo0NDRtkKZDm9ljiNS1P03CLh1CTKFZ023rsX4gd5WtI47-dEi-Xuar2SJbvr--zabLzIlcpcyXqIqJFIXwIIrSMel1USqQJcKEa46V8tKqHE7vW8sL7SpnARUrlQfrUQzJ0-XuxtZm14Wt7XrT2mAW06U5Z4wDk6CKPT9180vXdW2MHVbXAWfmjNH8YzQgzAWj-AWH0Wip</recordid><startdate>20160226</startdate><enddate>20160226</enddate><creator>Kajtoch, Dariusz</creator><creator>Pawłowski, Krzysztof</creator><creator>Witkowska, Emilia</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20160226</creationdate><title>Entanglement storage by classical fixed points in the two-axis countertwisting model</title><author>Kajtoch, Dariusz ; Pawłowski, Krzysztof ; Witkowska, Emilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-dbe5784373d937bc04d67b594be98161ef5d4a529469aa176cfca9e50b5d9ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Quantum Gases</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kajtoch, Dariusz</creatorcontrib><creatorcontrib>Pawłowski, Krzysztof</creatorcontrib><creatorcontrib>Witkowska, Emilia</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kajtoch, Dariusz</au><au>Pawłowski, Krzysztof</au><au>Witkowska, Emilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement storage by classical fixed points in the two-axis countertwisting model</atitle><jtitle>Physical review. A</jtitle><date>2016-02-26</date><risdate>2016</risdate><volume>93</volume><issue>2</issue><artnum>022331</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>We analyze a scheme for self-trapping of entangled state by classical stable fixed points in the two-axis counter-twisting model. A characteristic feature of the two-axis counter-twisting Hamiltonian is the existence of the four stable center and two unstable saddle fixed points in their mean-field phase space. The entangled state is generated dynamically from an initial spin coherent state located around an unstable saddle fixed point in a spin-1/2 ensemble. At an optimal moment of time the state is shifted to a position around stable center fixed points by a single rotation, where its dynamics and properties are approximately frozen. In this way one can store the entangled state of high value of the quantum Fisher information for further purposes. The effect of noise on the scheme is also discussed.</abstract><doi>10.1103/PhysRevA.93.022331</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9926
ispartof Physical review. A, 2016-02, Vol.93 (2), Article 022331
issn 2469-9926
2469-9934
language eng
recordid cdi_crossref_primary_10_1103_PhysRevA_93_022331
source American Physical Society Journals
subjects Condensed Matter
Physics
Quantum Gases
Quantum Physics
title Entanglement storage by classical fixed points in the two-axis countertwisting model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20storage%20by%20classical%20fixed%20points%20in%20the%20two-axis%20countertwisting%20model&rft.jtitle=Physical%20review.%20A&rft.au=Kajtoch,%20Dariusz&rft.date=2016-02-26&rft.volume=93&rft.issue=2&rft.artnum=022331&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.93.022331&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01904957v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true