Consolidation and translation regulation: Figure 1

mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Learning & memory (Cold Spring Harbor, N.Y.) N.Y.), 2012-09, Vol.19 (9), p.410-422
Hauptverfasser: Gal-Ben-Ari, Shunit, Kenney, Justin W., Ounalla-Saad, Hadile, Taha, Elham, David, Orit, Levitan, David, Gildish, Iness, Panja, Debabrata, Pai, Balagopal, Wibrand, Karin, Simpson, T. Ian, Proud, Christopher G., Bramham, Clive R., Armstrong, J. Douglas, Rosenblum, Kobi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 9
container_start_page 410
container_title Learning & memory (Cold Spring Harbor, N.Y.)
container_volume 19
creator Gal-Ben-Ari, Shunit
Kenney, Justin W.
Ounalla-Saad, Hadile
Taha, Elham
David, Orit
Levitan, David
Gildish, Iness
Panja, Debabrata
Pai, Balagopal
Wibrand, Karin
Simpson, T. Ian
Proud, Christopher G.
Bramham, Clive R.
Armstrong, J. Douglas
Rosenblum, Kobi
description mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time. In the normal brain, control of translation is a key mechanism for regulation of memory and synaptic plasticity consolidation, i.e., the off-line processing of acquired information. These regulation processes may differ between different brain structures or neuronal populations. Moreover, dysregulation of translation leads to pathological brain function such as memory impairment. Both normal and abnormal function of the translation machinery is believed to lead to translational up-regulation or down-regulation of a subset of mRNAs. However, the identification of these newly synthesized proteins and determination of the rates of protein synthesis or degradation taking place in different neuronal types and compartments at different time points in the brain demand new proteomic methods and system biology approaches. Here, we discuss in detail the relationship between translation regulation and memory or synaptic plasticity consolidation while focusing on a model of cortical-dependent taste learning task and hippocampal-dependent plasticity. In addition, we describe a novel systems biology perspective to better describe consolidation.
doi_str_mv 10.1101/lm.026849.112
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1101_lm_026849_112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1101_lm_026849_112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1872-f93e7e942d72e49d18cf0f4d6a485d5d7d24a8b5e4be2de743f5af8136eb053b3</originalsourceid><addsrcrecordid>eNpNjz1PwzAURS1EJUrLyJ4_4OLnj9hmQxGlSJVYYLac-LkKchJktwP_nqAwMN1zlqt7CbkHtgNg8JCGHeO1kXZWfkXWoKSlShp1_Y9vyG0pn4wxrSWsCW-msUypD_7cT2Plx1Cdsx9LWjzj6bLgY7XvT5eMFWzJKvpU8O4vN-Rj__zeHOjx7eW1eTrSDozmNFqBGq3kQXOUNoDpIosy1H5eEVTQgUtvWoWyRR5QSxGVjwZEjS1TohUbQpfeLk-lZIzuK_eDz98OmPs97NLglsOzcvED1qxIyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Consolidation and translation regulation: Figure 1</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gal-Ben-Ari, Shunit ; Kenney, Justin W. ; Ounalla-Saad, Hadile ; Taha, Elham ; David, Orit ; Levitan, David ; Gildish, Iness ; Panja, Debabrata ; Pai, Balagopal ; Wibrand, Karin ; Simpson, T. Ian ; Proud, Christopher G. ; Bramham, Clive R. ; Armstrong, J. Douglas ; Rosenblum, Kobi</creator><creatorcontrib>Gal-Ben-Ari, Shunit ; Kenney, Justin W. ; Ounalla-Saad, Hadile ; Taha, Elham ; David, Orit ; Levitan, David ; Gildish, Iness ; Panja, Debabrata ; Pai, Balagopal ; Wibrand, Karin ; Simpson, T. Ian ; Proud, Christopher G. ; Bramham, Clive R. ; Armstrong, J. Douglas ; Rosenblum, Kobi</creatorcontrib><description>mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time. In the normal brain, control of translation is a key mechanism for regulation of memory and synaptic plasticity consolidation, i.e., the off-line processing of acquired information. These regulation processes may differ between different brain structures or neuronal populations. Moreover, dysregulation of translation leads to pathological brain function such as memory impairment. Both normal and abnormal function of the translation machinery is believed to lead to translational up-regulation or down-regulation of a subset of mRNAs. However, the identification of these newly synthesized proteins and determination of the rates of protein synthesis or degradation taking place in different neuronal types and compartments at different time points in the brain demand new proteomic methods and system biology approaches. Here, we discuss in detail the relationship between translation regulation and memory or synaptic plasticity consolidation while focusing on a model of cortical-dependent taste learning task and hippocampal-dependent plasticity. In addition, we describe a novel systems biology perspective to better describe consolidation.</description><identifier>ISSN: 1549-5485</identifier><identifier>EISSN: 1549-5485</identifier><identifier>DOI: 10.1101/lm.026849.112</identifier><language>eng</language><ispartof>Learning &amp; memory (Cold Spring Harbor, N.Y.), 2012-09, Vol.19 (9), p.410-422</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1872-f93e7e942d72e49d18cf0f4d6a485d5d7d24a8b5e4be2de743f5af8136eb053b3</citedby><cites>FETCH-LOGICAL-c1872-f93e7e942d72e49d18cf0f4d6a485d5d7d24a8b5e4be2de743f5af8136eb053b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gal-Ben-Ari, Shunit</creatorcontrib><creatorcontrib>Kenney, Justin W.</creatorcontrib><creatorcontrib>Ounalla-Saad, Hadile</creatorcontrib><creatorcontrib>Taha, Elham</creatorcontrib><creatorcontrib>David, Orit</creatorcontrib><creatorcontrib>Levitan, David</creatorcontrib><creatorcontrib>Gildish, Iness</creatorcontrib><creatorcontrib>Panja, Debabrata</creatorcontrib><creatorcontrib>Pai, Balagopal</creatorcontrib><creatorcontrib>Wibrand, Karin</creatorcontrib><creatorcontrib>Simpson, T. Ian</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><creatorcontrib>Bramham, Clive R.</creatorcontrib><creatorcontrib>Armstrong, J. Douglas</creatorcontrib><creatorcontrib>Rosenblum, Kobi</creatorcontrib><title>Consolidation and translation regulation: Figure 1</title><title>Learning &amp; memory (Cold Spring Harbor, N.Y.)</title><description>mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time. In the normal brain, control of translation is a key mechanism for regulation of memory and synaptic plasticity consolidation, i.e., the off-line processing of acquired information. These regulation processes may differ between different brain structures or neuronal populations. Moreover, dysregulation of translation leads to pathological brain function such as memory impairment. Both normal and abnormal function of the translation machinery is believed to lead to translational up-regulation or down-regulation of a subset of mRNAs. However, the identification of these newly synthesized proteins and determination of the rates of protein synthesis or degradation taking place in different neuronal types and compartments at different time points in the brain demand new proteomic methods and system biology approaches. Here, we discuss in detail the relationship between translation regulation and memory or synaptic plasticity consolidation while focusing on a model of cortical-dependent taste learning task and hippocampal-dependent plasticity. In addition, we describe a novel systems biology perspective to better describe consolidation.</description><issn>1549-5485</issn><issn>1549-5485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNjz1PwzAURS1EJUrLyJ4_4OLnj9hmQxGlSJVYYLac-LkKchJktwP_nqAwMN1zlqt7CbkHtgNg8JCGHeO1kXZWfkXWoKSlShp1_Y9vyG0pn4wxrSWsCW-msUypD_7cT2Plx1Cdsx9LWjzj6bLgY7XvT5eMFWzJKvpU8O4vN-Rj__zeHOjx7eW1eTrSDozmNFqBGq3kQXOUNoDpIosy1H5eEVTQgUtvWoWyRR5QSxGVjwZEjS1TohUbQpfeLk-lZIzuK_eDz98OmPs97NLglsOzcvED1qxIyw</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Gal-Ben-Ari, Shunit</creator><creator>Kenney, Justin W.</creator><creator>Ounalla-Saad, Hadile</creator><creator>Taha, Elham</creator><creator>David, Orit</creator><creator>Levitan, David</creator><creator>Gildish, Iness</creator><creator>Panja, Debabrata</creator><creator>Pai, Balagopal</creator><creator>Wibrand, Karin</creator><creator>Simpson, T. Ian</creator><creator>Proud, Christopher G.</creator><creator>Bramham, Clive R.</creator><creator>Armstrong, J. Douglas</creator><creator>Rosenblum, Kobi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201209</creationdate><title>Consolidation and translation regulation: Figure 1</title><author>Gal-Ben-Ari, Shunit ; Kenney, Justin W. ; Ounalla-Saad, Hadile ; Taha, Elham ; David, Orit ; Levitan, David ; Gildish, Iness ; Panja, Debabrata ; Pai, Balagopal ; Wibrand, Karin ; Simpson, T. Ian ; Proud, Christopher G. ; Bramham, Clive R. ; Armstrong, J. Douglas ; Rosenblum, Kobi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1872-f93e7e942d72e49d18cf0f4d6a485d5d7d24a8b5e4be2de743f5af8136eb053b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gal-Ben-Ari, Shunit</creatorcontrib><creatorcontrib>Kenney, Justin W.</creatorcontrib><creatorcontrib>Ounalla-Saad, Hadile</creatorcontrib><creatorcontrib>Taha, Elham</creatorcontrib><creatorcontrib>David, Orit</creatorcontrib><creatorcontrib>Levitan, David</creatorcontrib><creatorcontrib>Gildish, Iness</creatorcontrib><creatorcontrib>Panja, Debabrata</creatorcontrib><creatorcontrib>Pai, Balagopal</creatorcontrib><creatorcontrib>Wibrand, Karin</creatorcontrib><creatorcontrib>Simpson, T. Ian</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><creatorcontrib>Bramham, Clive R.</creatorcontrib><creatorcontrib>Armstrong, J. Douglas</creatorcontrib><creatorcontrib>Rosenblum, Kobi</creatorcontrib><collection>CrossRef</collection><jtitle>Learning &amp; memory (Cold Spring Harbor, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gal-Ben-Ari, Shunit</au><au>Kenney, Justin W.</au><au>Ounalla-Saad, Hadile</au><au>Taha, Elham</au><au>David, Orit</au><au>Levitan, David</au><au>Gildish, Iness</au><au>Panja, Debabrata</au><au>Pai, Balagopal</au><au>Wibrand, Karin</au><au>Simpson, T. Ian</au><au>Proud, Christopher G.</au><au>Bramham, Clive R.</au><au>Armstrong, J. Douglas</au><au>Rosenblum, Kobi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consolidation and translation regulation: Figure 1</atitle><jtitle>Learning &amp; memory (Cold Spring Harbor, N.Y.)</jtitle><date>2012-09</date><risdate>2012</risdate><volume>19</volume><issue>9</issue><spage>410</spage><epage>422</epage><pages>410-422</pages><issn>1549-5485</issn><eissn>1549-5485</eissn><abstract>mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time. In the normal brain, control of translation is a key mechanism for regulation of memory and synaptic plasticity consolidation, i.e., the off-line processing of acquired information. These regulation processes may differ between different brain structures or neuronal populations. Moreover, dysregulation of translation leads to pathological brain function such as memory impairment. Both normal and abnormal function of the translation machinery is believed to lead to translational up-regulation or down-regulation of a subset of mRNAs. However, the identification of these newly synthesized proteins and determination of the rates of protein synthesis or degradation taking place in different neuronal types and compartments at different time points in the brain demand new proteomic methods and system biology approaches. Here, we discuss in detail the relationship between translation regulation and memory or synaptic plasticity consolidation while focusing on a model of cortical-dependent taste learning task and hippocampal-dependent plasticity. In addition, we describe a novel systems biology perspective to better describe consolidation.</abstract><doi>10.1101/lm.026849.112</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-5485
ispartof Learning & memory (Cold Spring Harbor, N.Y.), 2012-09, Vol.19 (9), p.410-422
issn 1549-5485
1549-5485
language eng
recordid cdi_crossref_primary_10_1101_lm_026849_112
source EZB-FREE-00999 freely available EZB journals; PubMed Central
title Consolidation and translation regulation: Figure 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consolidation%20and%20translation%20regulation:%20Figure%201&rft.jtitle=Learning%20&%20memory%20(Cold%20Spring%20Harbor,%20N.Y.)&rft.au=Gal-Ben-Ari,%20Shunit&rft.date=2012-09&rft.volume=19&rft.issue=9&rft.spage=410&rft.epage=422&rft.pages=410-422&rft.issn=1549-5485&rft.eissn=1549-5485&rft_id=info:doi/10.1101/lm.026849.112&rft_dat=%3Ccrossref%3E10_1101_lm_026849_112%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true