The dynamics of folding instability in a constrained Cosserat medium

Different from Cauchy elastic materials, generalized continua, and in particular constrained Cosserat materials, can be designed to possess extreme (near a failure of ellipticity) orthotropy properties and in this way to model folding in a three-dimensional solid. Following this approach, folding, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2017-05, Vol.375 (2093), p.20160159-20160159
Hauptverfasser: Gourgiotis, Panos A., Bigoni, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20160159
container_issue 2093
container_start_page 20160159
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 375
creator Gourgiotis, Panos A.
Bigoni, Davide
description Different from Cauchy elastic materials, generalized continua, and in particular constrained Cosserat materials, can be designed to possess extreme (near a failure of ellipticity) orthotropy properties and in this way to model folding in a three-dimensional solid. Following this approach, folding, which is a narrow zone of highly localized bending, spontaneously emerges as a deformation pattern occurring in a strongly anisotropic solid. How this peculiar pattern interacts with wave propagation in the time-harmonic domain is revealed through the derivation of an antiplane, infinite-body Green's function, which opens the way to integral techniques for anisotropic constrained Cosserat continua. Viewed as a perturbing agent, the Green's function shows that folding, emerging near a steadily pulsating source in the limit of failure of ellipticity, is transformed into a disturbance with wavefronts parallel to the folding itself. The results of the presented study introduce the possibility of exploiting constrained Cosserat solids for propagating waves in materials displaying origami patterns of deformation. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’
doi_str_mv 10.1098/rsta.2016.0159
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsta_2016_0159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884166693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-c3354106d94a35f0b9bc8d40d7dac5e6b212a4b8411c33f8abce3cff4fd3d9c73</originalsourceid><addsrcrecordid>eNp9kcFvFCEUxonR2Lp69Wgm8eJlVuABAxeTZrVq0sRE18QbYYBpqTPDCjNNxr--rFur1egJwvvxfe-9D6GnBK8JVvJlypNZU0zEGhOu7qFjwhpSUyXo_XIHwWqO4csRepTzJcaECE4foiMqoQGQ9Bi93l74yi2jGYLNVeyqLvYujOdVGItyG_owLeVemcrG8pJMGL2rNjFnn8xUDd6FeXiMHnSmz_7JzblCn0_fbDfv6rMPb99vTs5qywWdagvAGcHCKWaAd7hVrZWOYdc4Y7kXLSXUsFYyQgraSdNaD7brWOfAKdvACr066O7mtjhbP5aGer1LYTBp0dEEfbcyhgt9Hq80h0ZhRovAixuBFL_NPk96CNn6vjejj3PWRBZzIYSCgj7_A72McxrLeJooCVIqKFtcofWBsqmsJPnuthmC9T4gvQ9I7wPS-4DKh2e_j3CL_0ykAF8PQIpLMYs2-Gn55f3x0_bkChoeKFagsQSCGacg9PewO3iVog45z17_QO76_90O_M_tH0NcA8K8whQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983889328</pqid></control><display><type>article</type><title>The dynamics of folding instability in a constrained Cosserat medium</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gourgiotis, Panos A. ; Bigoni, Davide</creator><creatorcontrib>Gourgiotis, Panos A. ; Bigoni, Davide</creatorcontrib><description>Different from Cauchy elastic materials, generalized continua, and in particular constrained Cosserat materials, can be designed to possess extreme (near a failure of ellipticity) orthotropy properties and in this way to model folding in a three-dimensional solid. Following this approach, folding, which is a narrow zone of highly localized bending, spontaneously emerges as a deformation pattern occurring in a strongly anisotropic solid. How this peculiar pattern interacts with wave propagation in the time-harmonic domain is revealed through the derivation of an antiplane, infinite-body Green's function, which opens the way to integral techniques for anisotropic constrained Cosserat continua. Viewed as a perturbing agent, the Green's function shows that folding, emerging near a steadily pulsating source in the limit of failure of ellipticity, is transformed into a disturbance with wavefronts parallel to the folding itself. The results of the presented study introduce the possibility of exploiting constrained Cosserat solids for propagating waves in materials displaying origami patterns of deformation. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2016.0159</identifier><identifier>PMID: 28373382</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Complex Media ; Deformation mechanisms ; Dynamic stability ; Ellipticity ; Folding ; Green's Function ; Patterning ; Three dimensional models ; Wave fronts ; Wave Propagation</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2017-05, Vol.375 (2093), p.20160159-20160159</ispartof><rights>2017 The Authors.</rights><rights>Copyright The Royal Society Publishing May 13, 2017</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-c3354106d94a35f0b9bc8d40d7dac5e6b212a4b8411c33f8abce3cff4fd3d9c73</citedby><cites>FETCH-LOGICAL-c562t-c3354106d94a35f0b9bc8d40d7dac5e6b212a4b8411c33f8abce3cff4fd3d9c73</cites><orcidid>0000-0001-5423-6033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28373382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gourgiotis, Panos A.</creatorcontrib><creatorcontrib>Bigoni, Davide</creatorcontrib><title>The dynamics of folding instability in a constrained Cosserat medium</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Different from Cauchy elastic materials, generalized continua, and in particular constrained Cosserat materials, can be designed to possess extreme (near a failure of ellipticity) orthotropy properties and in this way to model folding in a three-dimensional solid. Following this approach, folding, which is a narrow zone of highly localized bending, spontaneously emerges as a deformation pattern occurring in a strongly anisotropic solid. How this peculiar pattern interacts with wave propagation in the time-harmonic domain is revealed through the derivation of an antiplane, infinite-body Green's function, which opens the way to integral techniques for anisotropic constrained Cosserat continua. Viewed as a perturbing agent, the Green's function shows that folding, emerging near a steadily pulsating source in the limit of failure of ellipticity, is transformed into a disturbance with wavefronts parallel to the folding itself. The results of the presented study introduce the possibility of exploiting constrained Cosserat solids for propagating waves in materials displaying origami patterns of deformation. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’</description><subject>Complex Media</subject><subject>Deformation mechanisms</subject><subject>Dynamic stability</subject><subject>Ellipticity</subject><subject>Folding</subject><subject>Green's Function</subject><subject>Patterning</subject><subject>Three dimensional models</subject><subject>Wave fronts</subject><subject>Wave Propagation</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kcFvFCEUxonR2Lp69Wgm8eJlVuABAxeTZrVq0sRE18QbYYBpqTPDCjNNxr--rFur1egJwvvxfe-9D6GnBK8JVvJlypNZU0zEGhOu7qFjwhpSUyXo_XIHwWqO4csRepTzJcaECE4foiMqoQGQ9Bi93l74yi2jGYLNVeyqLvYujOdVGItyG_owLeVemcrG8pJMGL2rNjFnn8xUDd6FeXiMHnSmz_7JzblCn0_fbDfv6rMPb99vTs5qywWdagvAGcHCKWaAd7hVrZWOYdc4Y7kXLSXUsFYyQgraSdNaD7brWOfAKdvACr066O7mtjhbP5aGer1LYTBp0dEEfbcyhgt9Hq80h0ZhRovAixuBFL_NPk96CNn6vjejj3PWRBZzIYSCgj7_A72McxrLeJooCVIqKFtcofWBsqmsJPnuthmC9T4gvQ9I7wPS-4DKh2e_j3CL_0ykAF8PQIpLMYs2-Gn55f3x0_bkChoeKFagsQSCGacg9PewO3iVog45z17_QO76_90O_M_tH0NcA8K8whQ</recordid><startdate>20170513</startdate><enddate>20170513</enddate><creator>Gourgiotis, Panos A.</creator><creator>Bigoni, Davide</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5423-6033</orcidid></search><sort><creationdate>20170513</creationdate><title>The dynamics of folding instability in a constrained Cosserat medium</title><author>Gourgiotis, Panos A. ; Bigoni, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-c3354106d94a35f0b9bc8d40d7dac5e6b212a4b8411c33f8abce3cff4fd3d9c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complex Media</topic><topic>Deformation mechanisms</topic><topic>Dynamic stability</topic><topic>Ellipticity</topic><topic>Folding</topic><topic>Green's Function</topic><topic>Patterning</topic><topic>Three dimensional models</topic><topic>Wave fronts</topic><topic>Wave Propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gourgiotis, Panos A.</creatorcontrib><creatorcontrib>Bigoni, Davide</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gourgiotis, Panos A.</au><au>Bigoni, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamics of folding instability in a constrained Cosserat medium</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2017-05-13</date><risdate>2017</risdate><volume>375</volume><issue>2093</issue><spage>20160159</spage><epage>20160159</epage><pages>20160159-20160159</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Different from Cauchy elastic materials, generalized continua, and in particular constrained Cosserat materials, can be designed to possess extreme (near a failure of ellipticity) orthotropy properties and in this way to model folding in a three-dimensional solid. Following this approach, folding, which is a narrow zone of highly localized bending, spontaneously emerges as a deformation pattern occurring in a strongly anisotropic solid. How this peculiar pattern interacts with wave propagation in the time-harmonic domain is revealed through the derivation of an antiplane, infinite-body Green's function, which opens the way to integral techniques for anisotropic constrained Cosserat continua. Viewed as a perturbing agent, the Green's function shows that folding, emerging near a steadily pulsating source in the limit of failure of ellipticity, is transformed into a disturbance with wavefronts parallel to the folding itself. The results of the presented study introduce the possibility of exploiting constrained Cosserat solids for propagating waves in materials displaying origami patterns of deformation. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>28373382</pmid><doi>10.1098/rsta.2016.0159</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5423-6033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2017-05, Vol.375 (2093), p.20160159-20160159
issn 1364-503X
1471-2962
language eng
recordid cdi_crossref_primary_10_1098_rsta_2016_0159
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Complex Media
Deformation mechanisms
Dynamic stability
Ellipticity
Folding
Green's Function
Patterning
Three dimensional models
Wave fronts
Wave Propagation
title The dynamics of folding instability in a constrained Cosserat medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamics%20of%20folding%20instability%20in%20a%20constrained%20Cosserat%20medium&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Gourgiotis,%20Panos%20A.&rft.date=2017-05-13&rft.volume=375&rft.issue=2093&rft.spage=20160159&rft.epage=20160159&rft.pages=20160159-20160159&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2016.0159&rft_dat=%3Cproquest_cross%3E1884166693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983889328&rft_id=info:pmid/28373382&rfr_iscdi=true