Implicit and explicit prior information in near-infrared spectral imaging: accuracy, quantification and diagnostic value

Near-infrared spectroscopy (NIRS) of tissue provides quantification of absorbers, scattering and luminescent agents in bulk tissue through the use of measurement data and assumptions. Prior knowledge can be critical about things such as (i) the tissue shape and/or structure, (ii) spectral constituen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2011-11, Vol.369 (1955), p.4531-4557
Hauptverfasser: Pogue, Brian W., Davis, Scott C., Leblond, Frederic, Mastanduno, Michael A., Dehghani, Hamid, Paulsen, Keith D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4557
container_issue 1955
container_start_page 4531
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 369
creator Pogue, Brian W.
Davis, Scott C.
Leblond, Frederic
Mastanduno, Michael A.
Dehghani, Hamid
Paulsen, Keith D.
description Near-infrared spectroscopy (NIRS) of tissue provides quantification of absorbers, scattering and luminescent agents in bulk tissue through the use of measurement data and assumptions. Prior knowledge can be critical about things such as (i) the tissue shape and/or structure, (ii) spectral constituents, (iii) limits on parameters, (iv) demographic or biomarker data, and (v) biophysical models of the temporal signal shapes. A general framework of NIRS imaging with prior information is presented, showing that prior information datasets could be incorporated at any step in the NIRS process, with the general workflow being: (i) data acquisition, (ii) pre-processing, (iii) forward model, (iv) inversion/reconstruction, (v) post-processing, and (vi) interpretation/diagnosis. Most of the development in NIRS has used ad hoc or empirical implementations of prior information such as pre-measured absorber or fluorophore spectra, or tissue shapes as estimated by additional imaging tools. A comprehensive analysis would examine what prior information maximizes the accuracy in recovery and value for medical diagnosis, when implemented at separate stages of the NIRS sequence. Individual applications of prior information can show increases in accuracy or improved ability to estimate biochemical features of tissue, while other approaches may not. Most beneficial inclusion of prior information has been in the inversion/reconstruction process, because it solves the mathematical intractability. However, it is not clear that this is always the most beneficial stage.
doi_str_mv 10.1098/rsta.2011.0228
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsta_2011_0228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23057201</jstor_id><sourcerecordid>23057201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-30c517498276d05ca59a6eaa8528f91268cb3c3710671ef98edc4ba46496bf653</originalsourceid><addsrcrecordid>eNp9UUtv1DAQjhCIlsKVGyg3LmTxI3ZsDpWqikelSkhQJG7WrOMsXhI7tZ1Vl1-PQ5ZCheDksed7zPgriqcYrTCS4lWICVYEYbxChIh7xTGuG1wRycn9XFNeVwzRL0fFoxi3KMM4Iw-LI0IQ4hKx4-LmYhh7q20qwbWluTlcxmB9KK3rfBggWe9yXToDocpvAYJpyzganQL0pR1gY93mdQlaTwH0_mV5PYFLtrN64c7SrYWN8zFZXe6gn8zj4kEHfTRPDudJ8fntm6vz99Xlh3cX52eXleYEp4oizXBTS0Ea3iKmgUngBkAwIjqJCRd6TTVtMOINNp0UptX1GmpeS77uOKMnxemiO07rITeNm4dWecEBwl55sOpux9mvauN3ihJOG1FngRcHgeCvJxOTGmzUpu_BGT9FJaTEFJMaZeRqQergYwymu3XBSM1pqTktNael5rQy4fmfs93Cf8WTAd8WQPD7_EleW5P2auun4PJVffx0dbajXFosGVNIUJw5Atfqux0Xr9xUNsbJqJ-Qu_5_j0P_5_bPJZ4trG1MPvzegSLWZBT9Adjs0ho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>899131240</pqid></control><display><type>article</type><title>Implicit and explicit prior information in near-infrared spectral imaging: accuracy, quantification and diagnostic value</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Pogue, Brian W. ; Davis, Scott C. ; Leblond, Frederic ; Mastanduno, Michael A. ; Dehghani, Hamid ; Paulsen, Keith D.</creator><creatorcontrib>Pogue, Brian W. ; Davis, Scott C. ; Leblond, Frederic ; Mastanduno, Michael A. ; Dehghani, Hamid ; Paulsen, Keith D.</creatorcontrib><description>Near-infrared spectroscopy (NIRS) of tissue provides quantification of absorbers, scattering and luminescent agents in bulk tissue through the use of measurement data and assumptions. Prior knowledge can be critical about things such as (i) the tissue shape and/or structure, (ii) spectral constituents, (iii) limits on parameters, (iv) demographic or biomarker data, and (v) biophysical models of the temporal signal shapes. A general framework of NIRS imaging with prior information is presented, showing that prior information datasets could be incorporated at any step in the NIRS process, with the general workflow being: (i) data acquisition, (ii) pre-processing, (iii) forward model, (iv) inversion/reconstruction, (v) post-processing, and (vi) interpretation/diagnosis. Most of the development in NIRS has used ad hoc or empirical implementations of prior information such as pre-measured absorber or fluorophore spectra, or tissue shapes as estimated by additional imaging tools. A comprehensive analysis would examine what prior information maximizes the accuracy in recovery and value for medical diagnosis, when implemented at separate stages of the NIRS sequence. Individual applications of prior information can show increases in accuracy or improved ability to estimate biochemical features of tissue, while other approaches may not. Most beneficial inclusion of prior information has been in the inversion/reconstruction process, because it solves the mathematical intractability. However, it is not clear that this is always the most beneficial stage.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2011.0228</identifier><identifier>PMID: 22006905</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Biophysics - methods ; Breast Neoplasms - diagnosis ; Breast Neoplasms - pathology ; Diagnostic Imaging - methods ; False Positive Reactions ; Female ; Fluorescence ; Fluorescent Dyes - chemistry ; Humans ; Imaging ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Models, Theoretical ; Molecular ; Near-Infrared ; Neoplasms - pathology ; Optical ; Optical tomography ; Optics and Photonics ; Oxygen ; Quantification ; Reconstruction ; Reproducibility of Results ; Review ; Sensitivity and Specificity ; Spectroscopy ; Spectroscopy, Near-Infrared - methods ; Tissue samples ; Tomography ; Tomography, X-Ray Computed - methods ; Wavelengths</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2011-11, Vol.369 (1955), p.4531-4557</ispartof><rights>COPYRIGHT © 2011 The Royal Society</rights><rights>This journal is © 2011 The Royal Society</rights><rights>This journal is © 2011 The Royal Society 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-30c517498276d05ca59a6eaa8528f91268cb3c3710671ef98edc4ba46496bf653</citedby><cites>FETCH-LOGICAL-c621t-30c517498276d05ca59a6eaa8528f91268cb3c3710671ef98edc4ba46496bf653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23057201$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23057201$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,828,881,27901,27902,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22006905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pogue, Brian W.</creatorcontrib><creatorcontrib>Davis, Scott C.</creatorcontrib><creatorcontrib>Leblond, Frederic</creatorcontrib><creatorcontrib>Mastanduno, Michael A.</creatorcontrib><creatorcontrib>Dehghani, Hamid</creatorcontrib><creatorcontrib>Paulsen, Keith D.</creatorcontrib><title>Implicit and explicit prior information in near-infrared spectral imaging: accuracy, quantification and diagnostic value</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Near-infrared spectroscopy (NIRS) of tissue provides quantification of absorbers, scattering and luminescent agents in bulk tissue through the use of measurement data and assumptions. Prior knowledge can be critical about things such as (i) the tissue shape and/or structure, (ii) spectral constituents, (iii) limits on parameters, (iv) demographic or biomarker data, and (v) biophysical models of the temporal signal shapes. A general framework of NIRS imaging with prior information is presented, showing that prior information datasets could be incorporated at any step in the NIRS process, with the general workflow being: (i) data acquisition, (ii) pre-processing, (iii) forward model, (iv) inversion/reconstruction, (v) post-processing, and (vi) interpretation/diagnosis. Most of the development in NIRS has used ad hoc or empirical implementations of prior information such as pre-measured absorber or fluorophore spectra, or tissue shapes as estimated by additional imaging tools. A comprehensive analysis would examine what prior information maximizes the accuracy in recovery and value for medical diagnosis, when implemented at separate stages of the NIRS sequence. Individual applications of prior information can show increases in accuracy or improved ability to estimate biochemical features of tissue, while other approaches may not. Most beneficial inclusion of prior information has been in the inversion/reconstruction process, because it solves the mathematical intractability. However, it is not clear that this is always the most beneficial stage.</description><subject>Biophysics - methods</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - pathology</subject><subject>Diagnostic Imaging - methods</subject><subject>False Positive Reactions</subject><subject>Female</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Humans</subject><subject>Imaging</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Theoretical</subject><subject>Molecular</subject><subject>Near-Infrared</subject><subject>Neoplasms - pathology</subject><subject>Optical</subject><subject>Optical tomography</subject><subject>Optics and Photonics</subject><subject>Oxygen</subject><subject>Quantification</subject><subject>Reconstruction</subject><subject>Reproducibility of Results</subject><subject>Review</subject><subject>Sensitivity and Specificity</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Tissue samples</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Wavelengths</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UUtv1DAQjhCIlsKVGyg3LmTxI3ZsDpWqikelSkhQJG7WrOMsXhI7tZ1Vl1-PQ5ZCheDksed7zPgriqcYrTCS4lWICVYEYbxChIh7xTGuG1wRycn9XFNeVwzRL0fFoxi3KMM4Iw-LI0IQ4hKx4-LmYhh7q20qwbWluTlcxmB9KK3rfBggWe9yXToDocpvAYJpyzganQL0pR1gY93mdQlaTwH0_mV5PYFLtrN64c7SrYWN8zFZXe6gn8zj4kEHfTRPDudJ8fntm6vz99Xlh3cX52eXleYEp4oizXBTS0Ea3iKmgUngBkAwIjqJCRd6TTVtMOINNp0UptX1GmpeS77uOKMnxemiO07rITeNm4dWecEBwl55sOpux9mvauN3ihJOG1FngRcHgeCvJxOTGmzUpu_BGT9FJaTEFJMaZeRqQergYwymu3XBSM1pqTktNael5rQy4fmfs93Cf8WTAd8WQPD7_EleW5P2auun4PJVffx0dbajXFosGVNIUJw5Atfqux0Xr9xUNsbJqJ-Qu_5_j0P_5_bPJZ4trG1MPvzegSLWZBT9Adjs0ho</recordid><startdate>20111128</startdate><enddate>20111128</enddate><creator>Pogue, Brian W.</creator><creator>Davis, Scott C.</creator><creator>Leblond, Frederic</creator><creator>Mastanduno, Michael A.</creator><creator>Dehghani, Hamid</creator><creator>Paulsen, Keith D.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111128</creationdate><title>Implicit and explicit prior information in near-infrared spectral imaging: accuracy, quantification and diagnostic value</title><author>Pogue, Brian W. ; Davis, Scott C. ; Leblond, Frederic ; Mastanduno, Michael A. ; Dehghani, Hamid ; Paulsen, Keith D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-30c517498276d05ca59a6eaa8528f91268cb3c3710671ef98edc4ba46496bf653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biophysics - methods</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - pathology</topic><topic>Diagnostic Imaging - methods</topic><topic>False Positive Reactions</topic><topic>Female</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Humans</topic><topic>Imaging</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Theoretical</topic><topic>Molecular</topic><topic>Near-Infrared</topic><topic>Neoplasms - pathology</topic><topic>Optical</topic><topic>Optical tomography</topic><topic>Optics and Photonics</topic><topic>Oxygen</topic><topic>Quantification</topic><topic>Reconstruction</topic><topic>Reproducibility of Results</topic><topic>Review</topic><topic>Sensitivity and Specificity</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Tissue samples</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pogue, Brian W.</creatorcontrib><creatorcontrib>Davis, Scott C.</creatorcontrib><creatorcontrib>Leblond, Frederic</creatorcontrib><creatorcontrib>Mastanduno, Michael A.</creatorcontrib><creatorcontrib>Dehghani, Hamid</creatorcontrib><creatorcontrib>Paulsen, Keith D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pogue, Brian W.</au><au>Davis, Scott C.</au><au>Leblond, Frederic</au><au>Mastanduno, Michael A.</au><au>Dehghani, Hamid</au><au>Paulsen, Keith D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implicit and explicit prior information in near-infrared spectral imaging: accuracy, quantification and diagnostic value</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2011-11-28</date><risdate>2011</risdate><volume>369</volume><issue>1955</issue><spage>4531</spage><epage>4557</epage><pages>4531-4557</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Near-infrared spectroscopy (NIRS) of tissue provides quantification of absorbers, scattering and luminescent agents in bulk tissue through the use of measurement data and assumptions. Prior knowledge can be critical about things such as (i) the tissue shape and/or structure, (ii) spectral constituents, (iii) limits on parameters, (iv) demographic or biomarker data, and (v) biophysical models of the temporal signal shapes. A general framework of NIRS imaging with prior information is presented, showing that prior information datasets could be incorporated at any step in the NIRS process, with the general workflow being: (i) data acquisition, (ii) pre-processing, (iii) forward model, (iv) inversion/reconstruction, (v) post-processing, and (vi) interpretation/diagnosis. Most of the development in NIRS has used ad hoc or empirical implementations of prior information such as pre-measured absorber or fluorophore spectra, or tissue shapes as estimated by additional imaging tools. A comprehensive analysis would examine what prior information maximizes the accuracy in recovery and value for medical diagnosis, when implemented at separate stages of the NIRS sequence. Individual applications of prior information can show increases in accuracy or improved ability to estimate biochemical features of tissue, while other approaches may not. Most beneficial inclusion of prior information has been in the inversion/reconstruction process, because it solves the mathematical intractability. However, it is not clear that this is always the most beneficial stage.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>22006905</pmid><doi>10.1098/rsta.2011.0228</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2011-11, Vol.369 (1955), p.4531-4557
issn 1364-503X
1471-2962
language eng
recordid cdi_crossref_primary_10_1098_rsta_2011_0228
source MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR Mathematics & Statistics
subjects Biophysics - methods
Breast Neoplasms - diagnosis
Breast Neoplasms - pathology
Diagnostic Imaging - methods
False Positive Reactions
Female
Fluorescence
Fluorescent Dyes - chemistry
Humans
Imaging
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Models, Theoretical
Molecular
Near-Infrared
Neoplasms - pathology
Optical
Optical tomography
Optics and Photonics
Oxygen
Quantification
Reconstruction
Reproducibility of Results
Review
Sensitivity and Specificity
Spectroscopy
Spectroscopy, Near-Infrared - methods
Tissue samples
Tomography
Tomography, X-Ray Computed - methods
Wavelengths
title Implicit and explicit prior information in near-infrared spectral imaging: accuracy, quantification and diagnostic value
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implicit%20and%20explicit%20prior%20information%20in%20near-infrared%20spectral%20imaging:%20accuracy,%20quantification%20and%20diagnostic%20value&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Pogue,%20Brian%20W.&rft.date=2011-11-28&rft.volume=369&rft.issue=1955&rft.spage=4531&rft.epage=4557&rft.pages=4531-4557&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2011.0228&rft_dat=%3Cjstor_cross%3E23057201%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=899131240&rft_id=info:pmid/22006905&rft_jstor_id=23057201&rfr_iscdi=true