Statistical inference for exploratory data analysis and model diagnostics
We propose to furnish visual statistical methods with an inferential framework and protocol, modelled on confirmatory statistical testing. In this framework, plots take on the role of test statistics, and human cognition the role of statistical tests. Statistical significance of 'discoveries...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2009-11, Vol.367 (1906), p.4361-4383 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4383 |
---|---|
container_issue | 1906 |
container_start_page | 4361 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 367 |
creator | Buja, Andreas Cook, Dianne Hofmann, Heike Lawrence, Michael Lee, Eun-Kyung Swayne, Deborah F. Wickham, Hadley |
description | We propose to furnish visual statistical methods with an inferential framework and protocol, modelled on confirmatory statistical testing. In this framework, plots take on the role of test statistics, and human cognition the role of statistical tests. Statistical significance of 'discoveries' is measured by having the human viewer compare the plot of the real dataset with collections of plots of simulated datasets. A simple but rigorous protocol that provides inferential validity is modelled after the 'lineup' popular from criminal legal procedures. Another protocol modelled after the 'Rorschach' inkblot test, well known from (pop-)psychology, will help analysts acclimatize to random variability before being exposed to the plot of the real data. The proposed protocols will be useful for exploratory data analysis, with reference datasets simulated by using a null assumption that structure is absent. The framework is also useful for model diagnostics in which case reference datasets are simulated from the model in question. This latter point follows up on previous proposals. Adopting the protocols will mean an adjustment in working procedures for data analysts, adding more rigour, and teachers might find that incorporating these protocols into the curriculum improves their students' statistical thinking. |
doi_str_mv | 10.1098/rsta.2009.0120 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsta_2009_0120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40485732</jstor_id><sourcerecordid>40485732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-3f22f804cbedb2109ecc6ab6a70a34c2595326e1219f77cc2a55d70a117b010f3</originalsourceid><addsrcrecordid>eNp9UU1v1DAUjBCIfsCVGyg3Tln8bMeOb1QrWoqKkGhB3Cyv47TeZuPUdqDh1-NsVosqRE-2NPPevJnJsleAFoBE9c6HqBYYIbFAgNGT7BAohwILhp-mP2G0KBH5cZAdhbBGCICV-Hl2AKJCJaXiMDu_jCraEK1WbW67xnjTaZM3zufmvm-dV9H5Ma9VVLnqVDsGG9KnzjeuNm1eW3XduWk8vMieNaoN5uXuPc6-nX64Wn4sLr6cnS9PLgrNCI8FaTBuKkT1ytQrnDwYrZlaMcWRIlTjUpQEMwMYRMO51liVZZ0wAL5CgBpynL2d9_be3Q0mRLmxQZu2VZ1xQ5CcEAaMC0jMxczU3oXgTSN7bzfKjxKQnNKTU3pySk9O6aWBN7vVw2pj6r_0XVyJcDsTvBuTR6etiaNcu8GnaIL8enl18pMwbkEgJlFFAHFKgMvftp-1EihtCIORW8pD_X_PIY-p_dfE63lqHVJ1ew8U0arkBCe8mPHUurnf48rfSsYJL-X3ikqxPP0En5MCS_z3M__GXt_8st7IB-ds1bXrouni1t7WGE0dyGZoW9nXU2Xw6Ao39rts9sPkD8Jm4Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733616791</pqid></control><display><type>article</type><title>Statistical inference for exploratory data analysis and model diagnostics</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Buja, Andreas ; Cook, Dianne ; Hofmann, Heike ; Lawrence, Michael ; Lee, Eun-Kyung ; Swayne, Deborah F. ; Wickham, Hadley</creator><creatorcontrib>Buja, Andreas ; Cook, Dianne ; Hofmann, Heike ; Lawrence, Michael ; Lee, Eun-Kyung ; Swayne, Deborah F. ; Wickham, Hadley</creatorcontrib><description>We propose to furnish visual statistical methods with an inferential framework and protocol, modelled on confirmatory statistical testing. In this framework, plots take on the role of test statistics, and human cognition the role of statistical tests. Statistical significance of 'discoveries' is measured by having the human viewer compare the plot of the real dataset with collections of plots of simulated datasets. A simple but rigorous protocol that provides inferential validity is modelled after the 'lineup' popular from criminal legal procedures. Another protocol modelled after the 'Rorschach' inkblot test, well known from (pop-)psychology, will help analysts acclimatize to random variability before being exposed to the plot of the real data. The proposed protocols will be useful for exploratory data analysis, with reference datasets simulated by using a null assumption that structure is absent. The framework is also useful for model diagnostics in which case reference datasets are simulated from the model in question. This latter point follows up on previous proposals. Adopting the protocols will mean an adjustment in working procedures for data analysts, adding more rigour, and teachers might find that incorporating these protocols into the curriculum improves their students' statistical thinking.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2009.0120</identifier><identifier>PMID: 19805449</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Calibration ; Cognitive Perception ; Data analysis ; Data Interpretation, Statistical ; Datasets ; Graphics ; Housing ; Housing - statistics & numerical data ; Humans ; Inference ; Modeling ; Models, Theoretical ; Null hypothesis ; Permutation Tests ; Photographic plates ; Rotation Tests ; Simulation ; Statistical Graphics ; Statistics ; Visual Data Mining</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2009-11, Vol.367 (1906), p.4361-4383</ispartof><rights>Copyright 2009 The Royal Society</rights><rights>2009 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-3f22f804cbedb2109ecc6ab6a70a34c2595326e1219f77cc2a55d70a117b010f3</citedby><cites>FETCH-LOGICAL-c637t-3f22f804cbedb2109ecc6ab6a70a34c2595326e1219f77cc2a55d70a117b010f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40485732$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40485732$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,832,27922,27923,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19805449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buja, Andreas</creatorcontrib><creatorcontrib>Cook, Dianne</creatorcontrib><creatorcontrib>Hofmann, Heike</creatorcontrib><creatorcontrib>Lawrence, Michael</creatorcontrib><creatorcontrib>Lee, Eun-Kyung</creatorcontrib><creatorcontrib>Swayne, Deborah F.</creatorcontrib><creatorcontrib>Wickham, Hadley</creatorcontrib><title>Statistical inference for exploratory data analysis and model diagnostics</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>We propose to furnish visual statistical methods with an inferential framework and protocol, modelled on confirmatory statistical testing. In this framework, plots take on the role of test statistics, and human cognition the role of statistical tests. Statistical significance of 'discoveries' is measured by having the human viewer compare the plot of the real dataset with collections of plots of simulated datasets. A simple but rigorous protocol that provides inferential validity is modelled after the 'lineup' popular from criminal legal procedures. Another protocol modelled after the 'Rorschach' inkblot test, well known from (pop-)psychology, will help analysts acclimatize to random variability before being exposed to the plot of the real data. The proposed protocols will be useful for exploratory data analysis, with reference datasets simulated by using a null assumption that structure is absent. The framework is also useful for model diagnostics in which case reference datasets are simulated from the model in question. This latter point follows up on previous proposals. Adopting the protocols will mean an adjustment in working procedures for data analysts, adding more rigour, and teachers might find that incorporating these protocols into the curriculum improves their students' statistical thinking.</description><subject>Calibration</subject><subject>Cognitive Perception</subject><subject>Data analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Datasets</subject><subject>Graphics</subject><subject>Housing</subject><subject>Housing - statistics & numerical data</subject><subject>Humans</subject><subject>Inference</subject><subject>Modeling</subject><subject>Models, Theoretical</subject><subject>Null hypothesis</subject><subject>Permutation Tests</subject><subject>Photographic plates</subject><subject>Rotation Tests</subject><subject>Simulation</subject><subject>Statistical Graphics</subject><subject>Statistics</subject><subject>Visual Data Mining</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAUjBCIfsCVGyg3Tln8bMeOb1QrWoqKkGhB3Cyv47TeZuPUdqDh1-NsVosqRE-2NPPevJnJsleAFoBE9c6HqBYYIbFAgNGT7BAohwILhp-mP2G0KBH5cZAdhbBGCICV-Hl2AKJCJaXiMDu_jCraEK1WbW67xnjTaZM3zufmvm-dV9H5Ma9VVLnqVDsGG9KnzjeuNm1eW3XduWk8vMieNaoN5uXuPc6-nX64Wn4sLr6cnS9PLgrNCI8FaTBuKkT1ytQrnDwYrZlaMcWRIlTjUpQEMwMYRMO51liVZZ0wAL5CgBpynL2d9_be3Q0mRLmxQZu2VZ1xQ5CcEAaMC0jMxczU3oXgTSN7bzfKjxKQnNKTU3pySk9O6aWBN7vVw2pj6r_0XVyJcDsTvBuTR6etiaNcu8GnaIL8enl18pMwbkEgJlFFAHFKgMvftp-1EihtCIORW8pD_X_PIY-p_dfE63lqHVJ1ew8U0arkBCe8mPHUurnf48rfSsYJL-X3ikqxPP0En5MCS_z3M__GXt_8st7IB-ds1bXrouni1t7WGE0dyGZoW9nXU2Xw6Ao39rts9sPkD8Jm4Pw</recordid><startdate>20091113</startdate><enddate>20091113</enddate><creator>Buja, Andreas</creator><creator>Cook, Dianne</creator><creator>Hofmann, Heike</creator><creator>Lawrence, Michael</creator><creator>Lee, Eun-Kyung</creator><creator>Swayne, Deborah F.</creator><creator>Wickham, Hadley</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091113</creationdate><title>Statistical inference for exploratory data analysis and model diagnostics</title><author>Buja, Andreas ; Cook, Dianne ; Hofmann, Heike ; Lawrence, Michael ; Lee, Eun-Kyung ; Swayne, Deborah F. ; Wickham, Hadley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-3f22f804cbedb2109ecc6ab6a70a34c2595326e1219f77cc2a55d70a117b010f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Calibration</topic><topic>Cognitive Perception</topic><topic>Data analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Datasets</topic><topic>Graphics</topic><topic>Housing</topic><topic>Housing - statistics & numerical data</topic><topic>Humans</topic><topic>Inference</topic><topic>Modeling</topic><topic>Models, Theoretical</topic><topic>Null hypothesis</topic><topic>Permutation Tests</topic><topic>Photographic plates</topic><topic>Rotation Tests</topic><topic>Simulation</topic><topic>Statistical Graphics</topic><topic>Statistics</topic><topic>Visual Data Mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buja, Andreas</creatorcontrib><creatorcontrib>Cook, Dianne</creatorcontrib><creatorcontrib>Hofmann, Heike</creatorcontrib><creatorcontrib>Lawrence, Michael</creatorcontrib><creatorcontrib>Lee, Eun-Kyung</creatorcontrib><creatorcontrib>Swayne, Deborah F.</creatorcontrib><creatorcontrib>Wickham, Hadley</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buja, Andreas</au><au>Cook, Dianne</au><au>Hofmann, Heike</au><au>Lawrence, Michael</au><au>Lee, Eun-Kyung</au><au>Swayne, Deborah F.</au><au>Wickham, Hadley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical inference for exploratory data analysis and model diagnostics</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2009-11-13</date><risdate>2009</risdate><volume>367</volume><issue>1906</issue><spage>4361</spage><epage>4383</epage><pages>4361-4383</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>We propose to furnish visual statistical methods with an inferential framework and protocol, modelled on confirmatory statistical testing. In this framework, plots take on the role of test statistics, and human cognition the role of statistical tests. Statistical significance of 'discoveries' is measured by having the human viewer compare the plot of the real dataset with collections of plots of simulated datasets. A simple but rigorous protocol that provides inferential validity is modelled after the 'lineup' popular from criminal legal procedures. Another protocol modelled after the 'Rorschach' inkblot test, well known from (pop-)psychology, will help analysts acclimatize to random variability before being exposed to the plot of the real data. The proposed protocols will be useful for exploratory data analysis, with reference datasets simulated by using a null assumption that structure is absent. The framework is also useful for model diagnostics in which case reference datasets are simulated from the model in question. This latter point follows up on previous proposals. Adopting the protocols will mean an adjustment in working procedures for data analysts, adding more rigour, and teachers might find that incorporating these protocols into the curriculum improves their students' statistical thinking.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>19805449</pmid><doi>10.1098/rsta.2009.0120</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2009-11, Vol.367 (1906), p.4361-4383 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rsta_2009_0120 |
source | MEDLINE; JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Calibration Cognitive Perception Data analysis Data Interpretation, Statistical Datasets Graphics Housing Housing - statistics & numerical data Humans Inference Modeling Models, Theoretical Null hypothesis Permutation Tests Photographic plates Rotation Tests Simulation Statistical Graphics Statistics Visual Data Mining |
title | Statistical inference for exploratory data analysis and model diagnostics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20inference%20for%20exploratory%20data%20analysis%20and%20model%20diagnostics&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Buja,%20Andreas&rft.date=2009-11-13&rft.volume=367&rft.issue=1906&rft.spage=4361&rft.epage=4383&rft.pages=4361-4383&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2009.0120&rft_dat=%3Cjstor_cross%3E40485732%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733616791&rft_id=info:pmid/19805449&rft_jstor_id=40485732&rfr_iscdi=true |