Towards complete descriptions of the free–energy landscapes of proteins
In recent years increasingly detailed information about the structures and dynamics of protein molecules has been obtained by innovative applications of experimental techniques, in particular nuclear magnetic resonance spectroscopy and protein engineering, and theoretical methods, notably molecular...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2005-02, Vol.363 (1827), p.433-452 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 452 |
---|---|
container_issue | 1827 |
container_start_page | 433 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 363 |
creator | Vendruscolo, Michele Dobson, Christopher M. |
description | In recent years increasingly detailed information about the structures and dynamics of protein molecules has been obtained by innovative applications of experimental techniques, in particular nuclear magnetic resonance spectroscopy and protein engineering, and theoretical methods, notably molecular dynamics simulations. In this article we discuss how such approaches can be combined by incorporating a wide range of different types of experimental data as restraints in computer simulations to provide unprecedented detail about the ensembles of structures that describe proteins in a wide variety of states from the native structure to highly unfolded species. Knowledge of these ensembles is beginning to enable the complete free-energy landscapes of individual proteins to be defined at atomic resolution. This strategy has provided new insights into the mechanism by which proteins are able to fold into their native states, or by which they fail to do so and give rise to harmful aggregates that are associated with a wide range of debilitating human diseases. |
doi_str_mv | 10.1098/rsta.2004.1501 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsta_2004_1501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30039579</jstor_id><sourcerecordid>30039579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-3bb905ef8ab287083163493437143dc930e162818798afa8553bb66f83122c0e3</originalsourceid><addsrcrecordid>eNp9kM1u1DAUhSMEoqWwZQfKil0G_8dZoaoCWmkkBATozvIkNx1PM3FqO5RhxTvwhjwJTjIUVYiu4uh89557TpI8xWiBUSFfOh_0giDEFpgjfC85xCzHGSkEuR_fVLCMI3p-kDzyfoMQxoKTh8kB5kIwWZDD5Ky019rVPq3stm8hQFqDr5zpg7GdT22ThjWkjQP49eMndOAudmmru9pXuodJ750NYDr_OHnQ6NbDk_33KPn05nV5cpot3709OzleZpUQKGR0tSoQh0bqFZE5khQLygrKaI4ZrauCIsCCSCzzQupGS87jhBBNBAmpENCj5MW8NxpfDeCD2hpfQRuvAjt4JXKaCypoBBczWDnrvYNG9c5stdspjNRYnhrLU2N5aiwvDjzfbx5WW6j_4vu2InA5A87uYkRbGQg7tbGD6-Kv-vCxPP4anQ2WJFdjNJQzxJD6bvrZK4rKeD-AmpDb_v-eQ-9y-2-IZ_PUxgfrbjJQhGjB8yLq2awbH-Dbja7d5dQcV58lU6dfluV7XlJ1HvlXM782F-tr40DdOmdyr2wXoAtTvCkYo1Q1Q9uqvm7iBnTnBrvr99X8maW_ASY_4IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67376363</pqid></control><display><type>article</type><title>Towards complete descriptions of the free–energy landscapes of proteins</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><source>Free Full-Text Journals in Chemistry</source><creator>Vendruscolo, Michele ; Dobson, Christopher M.</creator><contributor>McMillan, Paul F. ; Clary, David C. ; Clary, David C. ; McMillan, Paul F.</contributor><creatorcontrib>Vendruscolo, Michele ; Dobson, Christopher M. ; McMillan, Paul F. ; Clary, David C. ; Clary, David C. ; McMillan, Paul F.</creatorcontrib><description>In recent years increasingly detailed information about the structures and dynamics of protein molecules has been obtained by innovative applications of experimental techniques, in particular nuclear magnetic resonance spectroscopy and protein engineering, and theoretical methods, notably molecular dynamics simulations. In this article we discuss how such approaches can be combined by incorporating a wide range of different types of experimental data as restraints in computer simulations to provide unprecedented detail about the ensembles of structures that describe proteins in a wide variety of states from the native structure to highly unfolded species. Knowledge of these ensembles is beginning to enable the complete free-energy landscapes of individual proteins to be defined at atomic resolution. This strategy has provided new insights into the mechanism by which proteins are able to fold into their native states, or by which they fail to do so and give rise to harmful aggregates that are associated with a wide range of debilitating human diseases.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2004.1501</identifier><identifier>PMID: 15664892</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Aggregation ; Amyloid Diseases ; Amyloids ; Computer Simulation ; Computer Simulations ; Energy Landscape ; Energy Transfer ; Globules ; Hydrogen ; Models, Chemical ; Models, Molecular ; Molecular structure ; Molecules ; Multiprotein Complexes - chemistry ; Nuclear magnetic resonance ; Phase Transition ; Protein Aggregation ; Protein Conformation ; Protein Folding ; Protein Misfolding ; Proteins ; Proteins - chemistry ; Temperature ; Topology</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2005-02, Vol.363 (1827), p.433-452</ispartof><rights>Copyright 2005 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-3bb905ef8ab287083163493437143dc930e162818798afa8553bb66f83122c0e3</citedby><cites>FETCH-LOGICAL-c660t-3bb905ef8ab287083163493437143dc930e162818798afa8553bb66f83122c0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30039579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30039579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,830,27911,27912,58008,58241</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15664892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>McMillan, Paul F.</contributor><contributor>Clary, David C.</contributor><contributor>Clary, David C.</contributor><contributor>McMillan, Paul F.</contributor><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Dobson, Christopher M.</creatorcontrib><title>Towards complete descriptions of the free–energy landscapes of proteins</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>In recent years increasingly detailed information about the structures and dynamics of protein molecules has been obtained by innovative applications of experimental techniques, in particular nuclear magnetic resonance spectroscopy and protein engineering, and theoretical methods, notably molecular dynamics simulations. In this article we discuss how such approaches can be combined by incorporating a wide range of different types of experimental data as restraints in computer simulations to provide unprecedented detail about the ensembles of structures that describe proteins in a wide variety of states from the native structure to highly unfolded species. Knowledge of these ensembles is beginning to enable the complete free-energy landscapes of individual proteins to be defined at atomic resolution. This strategy has provided new insights into the mechanism by which proteins are able to fold into their native states, or by which they fail to do so and give rise to harmful aggregates that are associated with a wide range of debilitating human diseases.</description><subject>Aggregation</subject><subject>Amyloid Diseases</subject><subject>Amyloids</subject><subject>Computer Simulation</subject><subject>Computer Simulations</subject><subject>Energy Landscape</subject><subject>Energy Transfer</subject><subject>Globules</subject><subject>Hydrogen</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Nuclear magnetic resonance</subject><subject>Phase Transition</subject><subject>Protein Aggregation</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Misfolding</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Temperature</subject><subject>Topology</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1u1DAUhSMEoqWwZQfKil0G_8dZoaoCWmkkBATozvIkNx1PM3FqO5RhxTvwhjwJTjIUVYiu4uh89557TpI8xWiBUSFfOh_0giDEFpgjfC85xCzHGSkEuR_fVLCMI3p-kDzyfoMQxoKTh8kB5kIwWZDD5Ky019rVPq3stm8hQFqDr5zpg7GdT22ThjWkjQP49eMndOAudmmru9pXuodJ750NYDr_OHnQ6NbDk_33KPn05nV5cpot3709OzleZpUQKGR0tSoQh0bqFZE5khQLygrKaI4ZrauCIsCCSCzzQupGS87jhBBNBAmpENCj5MW8NxpfDeCD2hpfQRuvAjt4JXKaCypoBBczWDnrvYNG9c5stdspjNRYnhrLU2N5aiwvDjzfbx5WW6j_4vu2InA5A87uYkRbGQg7tbGD6-Kv-vCxPP4anQ2WJFdjNJQzxJD6bvrZK4rKeD-AmpDb_v-eQ-9y-2-IZ_PUxgfrbjJQhGjB8yLq2awbH-Dbja7d5dQcV58lU6dfluV7XlJ1HvlXM782F-tr40DdOmdyr2wXoAtTvCkYo1Q1Q9uqvm7iBnTnBrvr99X8maW_ASY_4IA</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>Vendruscolo, Michele</creator><creator>Dobson, Christopher M.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050215</creationdate><title>Towards complete descriptions of the free–energy landscapes of proteins</title><author>Vendruscolo, Michele ; Dobson, Christopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-3bb905ef8ab287083163493437143dc930e162818798afa8553bb66f83122c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aggregation</topic><topic>Amyloid Diseases</topic><topic>Amyloids</topic><topic>Computer Simulation</topic><topic>Computer Simulations</topic><topic>Energy Landscape</topic><topic>Energy Transfer</topic><topic>Globules</topic><topic>Hydrogen</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Nuclear magnetic resonance</topic><topic>Phase Transition</topic><topic>Protein Aggregation</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Misfolding</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Temperature</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Dobson, Christopher M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vendruscolo, Michele</au><au>Dobson, Christopher M.</au><au>McMillan, Paul F.</au><au>Clary, David C.</au><au>Clary, David C.</au><au>McMillan, Paul F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards complete descriptions of the free–energy landscapes of proteins</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2005-02-15</date><risdate>2005</risdate><volume>363</volume><issue>1827</issue><spage>433</spage><epage>452</epage><pages>433-452</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>In recent years increasingly detailed information about the structures and dynamics of protein molecules has been obtained by innovative applications of experimental techniques, in particular nuclear magnetic resonance spectroscopy and protein engineering, and theoretical methods, notably molecular dynamics simulations. In this article we discuss how such approaches can be combined by incorporating a wide range of different types of experimental data as restraints in computer simulations to provide unprecedented detail about the ensembles of structures that describe proteins in a wide variety of states from the native structure to highly unfolded species. Knowledge of these ensembles is beginning to enable the complete free-energy landscapes of individual proteins to be defined at atomic resolution. This strategy has provided new insights into the mechanism by which proteins are able to fold into their native states, or by which they fail to do so and give rise to harmful aggregates that are associated with a wide range of debilitating human diseases.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>15664892</pmid><doi>10.1098/rsta.2004.1501</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2005-02, Vol.363 (1827), p.433-452 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rsta_2004_1501 |
source | MEDLINE; JSTOR Mathematics & Statistics; Free Full-Text Journals in Chemistry |
subjects | Aggregation Amyloid Diseases Amyloids Computer Simulation Computer Simulations Energy Landscape Energy Transfer Globules Hydrogen Models, Chemical Models, Molecular Molecular structure Molecules Multiprotein Complexes - chemistry Nuclear magnetic resonance Phase Transition Protein Aggregation Protein Conformation Protein Folding Protein Misfolding Proteins Proteins - chemistry Temperature Topology |
title | Towards complete descriptions of the free–energy landscapes of proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20complete%20descriptions%20of%20the%20free%E2%80%93energy%20landscapes%20of%20proteins&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Vendruscolo,%20Michele&rft.date=2005-02-15&rft.volume=363&rft.issue=1827&rft.spage=433&rft.epage=452&rft.pages=433-452&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2004.1501&rft_dat=%3Cjstor_cross%3E30039579%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67376363&rft_id=info:pmid/15664892&rft_jstor_id=30039579&rfr_iscdi=true |