Towards complete descriptions of the free–energy landscapes of proteins

In recent years increasingly detailed information about the structures and dynamics of protein molecules has been obtained by innovative applications of experimental techniques, in particular nuclear magnetic resonance spectroscopy and protein engineering, and theoretical methods, notably molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2005-02, Vol.363 (1827), p.433-452
Hauptverfasser: Vendruscolo, Michele, Dobson, Christopher M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 452
container_issue 1827
container_start_page 433
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 363
creator Vendruscolo, Michele
Dobson, Christopher M.
description In recent years increasingly detailed information about the structures and dynamics of protein molecules has been obtained by innovative applications of experimental techniques, in particular nuclear magnetic resonance spectroscopy and protein engineering, and theoretical methods, notably molecular dynamics simulations. In this article we discuss how such approaches can be combined by incorporating a wide range of different types of experimental data as restraints in computer simulations to provide unprecedented detail about the ensembles of structures that describe proteins in a wide variety of states from the native structure to highly unfolded species. Knowledge of these ensembles is beginning to enable the complete free-energy landscapes of individual proteins to be defined at atomic resolution. This strategy has provided new insights into the mechanism by which proteins are able to fold into their native states, or by which they fail to do so and give rise to harmful aggregates that are associated with a wide range of debilitating human diseases.
doi_str_mv 10.1098/rsta.2004.1501
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsta_2004_1501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30039579</jstor_id><sourcerecordid>30039579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-3bb905ef8ab287083163493437143dc930e162818798afa8553bb66f83122c0e3</originalsourceid><addsrcrecordid>eNp9kM1u1DAUhSMEoqWwZQfKil0G_8dZoaoCWmkkBATozvIkNx1PM3FqO5RhxTvwhjwJTjIUVYiu4uh89557TpI8xWiBUSFfOh_0giDEFpgjfC85xCzHGSkEuR_fVLCMI3p-kDzyfoMQxoKTh8kB5kIwWZDD5Ky019rVPq3stm8hQFqDr5zpg7GdT22ThjWkjQP49eMndOAudmmru9pXuodJ750NYDr_OHnQ6NbDk_33KPn05nV5cpot3709OzleZpUQKGR0tSoQh0bqFZE5khQLygrKaI4ZrauCIsCCSCzzQupGS87jhBBNBAmpENCj5MW8NxpfDeCD2hpfQRuvAjt4JXKaCypoBBczWDnrvYNG9c5stdspjNRYnhrLU2N5aiwvDjzfbx5WW6j_4vu2InA5A87uYkRbGQg7tbGD6-Kv-vCxPP4anQ2WJFdjNJQzxJD6bvrZK4rKeD-AmpDb_v-eQ-9y-2-IZ_PUxgfrbjJQhGjB8yLq2awbH-Dbja7d5dQcV58lU6dfluV7XlJ1HvlXM782F-tr40DdOmdyr2wXoAtTvCkYo1Q1Q9uqvm7iBnTnBrvr99X8maW_ASY_4IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67376363</pqid></control><display><type>article</type><title>Towards complete descriptions of the free–energy landscapes of proteins</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>Free Full-Text Journals in Chemistry</source><creator>Vendruscolo, Michele ; Dobson, Christopher M.</creator><contributor>McMillan, Paul F. ; Clary, David C. ; Clary, David C. ; McMillan, Paul F.</contributor><creatorcontrib>Vendruscolo, Michele ; Dobson, Christopher M. ; McMillan, Paul F. ; Clary, David C. ; Clary, David C. ; McMillan, Paul F.</creatorcontrib><description>In recent years increasingly detailed information about the structures and dynamics of protein molecules has been obtained by innovative applications of experimental techniques, in particular nuclear magnetic resonance spectroscopy and protein engineering, and theoretical methods, notably molecular dynamics simulations. In this article we discuss how such approaches can be combined by incorporating a wide range of different types of experimental data as restraints in computer simulations to provide unprecedented detail about the ensembles of structures that describe proteins in a wide variety of states from the native structure to highly unfolded species. Knowledge of these ensembles is beginning to enable the complete free-energy landscapes of individual proteins to be defined at atomic resolution. This strategy has provided new insights into the mechanism by which proteins are able to fold into their native states, or by which they fail to do so and give rise to harmful aggregates that are associated with a wide range of debilitating human diseases.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2004.1501</identifier><identifier>PMID: 15664892</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Aggregation ; Amyloid Diseases ; Amyloids ; Computer Simulation ; Computer Simulations ; Energy Landscape ; Energy Transfer ; Globules ; Hydrogen ; Models, Chemical ; Models, Molecular ; Molecular structure ; Molecules ; Multiprotein Complexes - chemistry ; Nuclear magnetic resonance ; Phase Transition ; Protein Aggregation ; Protein Conformation ; Protein Folding ; Protein Misfolding ; Proteins ; Proteins - chemistry ; Temperature ; Topology</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2005-02, Vol.363 (1827), p.433-452</ispartof><rights>Copyright 2005 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-3bb905ef8ab287083163493437143dc930e162818798afa8553bb66f83122c0e3</citedby><cites>FETCH-LOGICAL-c660t-3bb905ef8ab287083163493437143dc930e162818798afa8553bb66f83122c0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30039579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30039579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,830,27911,27912,58008,58241</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15664892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>McMillan, Paul F.</contributor><contributor>Clary, David C.</contributor><contributor>Clary, David C.</contributor><contributor>McMillan, Paul F.</contributor><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Dobson, Christopher M.</creatorcontrib><title>Towards complete descriptions of the free–energy landscapes of proteins</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>In recent years increasingly detailed information about the structures and dynamics of protein molecules has been obtained by innovative applications of experimental techniques, in particular nuclear magnetic resonance spectroscopy and protein engineering, and theoretical methods, notably molecular dynamics simulations. In this article we discuss how such approaches can be combined by incorporating a wide range of different types of experimental data as restraints in computer simulations to provide unprecedented detail about the ensembles of structures that describe proteins in a wide variety of states from the native structure to highly unfolded species. Knowledge of these ensembles is beginning to enable the complete free-energy landscapes of individual proteins to be defined at atomic resolution. This strategy has provided new insights into the mechanism by which proteins are able to fold into their native states, or by which they fail to do so and give rise to harmful aggregates that are associated with a wide range of debilitating human diseases.</description><subject>Aggregation</subject><subject>Amyloid Diseases</subject><subject>Amyloids</subject><subject>Computer Simulation</subject><subject>Computer Simulations</subject><subject>Energy Landscape</subject><subject>Energy Transfer</subject><subject>Globules</subject><subject>Hydrogen</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Nuclear magnetic resonance</subject><subject>Phase Transition</subject><subject>Protein Aggregation</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Misfolding</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Temperature</subject><subject>Topology</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1u1DAUhSMEoqWwZQfKil0G_8dZoaoCWmkkBATozvIkNx1PM3FqO5RhxTvwhjwJTjIUVYiu4uh89557TpI8xWiBUSFfOh_0giDEFpgjfC85xCzHGSkEuR_fVLCMI3p-kDzyfoMQxoKTh8kB5kIwWZDD5Ky019rVPq3stm8hQFqDr5zpg7GdT22ThjWkjQP49eMndOAudmmru9pXuodJ750NYDr_OHnQ6NbDk_33KPn05nV5cpot3709OzleZpUQKGR0tSoQh0bqFZE5khQLygrKaI4ZrauCIsCCSCzzQupGS87jhBBNBAmpENCj5MW8NxpfDeCD2hpfQRuvAjt4JXKaCypoBBczWDnrvYNG9c5stdspjNRYnhrLU2N5aiwvDjzfbx5WW6j_4vu2InA5A87uYkRbGQg7tbGD6-Kv-vCxPP4anQ2WJFdjNJQzxJD6bvrZK4rKeD-AmpDb_v-eQ-9y-2-IZ_PUxgfrbjJQhGjB8yLq2awbH-Dbja7d5dQcV58lU6dfluV7XlJ1HvlXM782F-tr40DdOmdyr2wXoAtTvCkYo1Q1Q9uqvm7iBnTnBrvr99X8maW_ASY_4IA</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>Vendruscolo, Michele</creator><creator>Dobson, Christopher M.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050215</creationdate><title>Towards complete descriptions of the free–energy landscapes of proteins</title><author>Vendruscolo, Michele ; Dobson, Christopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-3bb905ef8ab287083163493437143dc930e162818798afa8553bb66f83122c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aggregation</topic><topic>Amyloid Diseases</topic><topic>Amyloids</topic><topic>Computer Simulation</topic><topic>Computer Simulations</topic><topic>Energy Landscape</topic><topic>Energy Transfer</topic><topic>Globules</topic><topic>Hydrogen</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Nuclear magnetic resonance</topic><topic>Phase Transition</topic><topic>Protein Aggregation</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Misfolding</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Temperature</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Dobson, Christopher M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vendruscolo, Michele</au><au>Dobson, Christopher M.</au><au>McMillan, Paul F.</au><au>Clary, David C.</au><au>Clary, David C.</au><au>McMillan, Paul F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards complete descriptions of the free–energy landscapes of proteins</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2005-02-15</date><risdate>2005</risdate><volume>363</volume><issue>1827</issue><spage>433</spage><epage>452</epage><pages>433-452</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>In recent years increasingly detailed information about the structures and dynamics of protein molecules has been obtained by innovative applications of experimental techniques, in particular nuclear magnetic resonance spectroscopy and protein engineering, and theoretical methods, notably molecular dynamics simulations. In this article we discuss how such approaches can be combined by incorporating a wide range of different types of experimental data as restraints in computer simulations to provide unprecedented detail about the ensembles of structures that describe proteins in a wide variety of states from the native structure to highly unfolded species. Knowledge of these ensembles is beginning to enable the complete free-energy landscapes of individual proteins to be defined at atomic resolution. This strategy has provided new insights into the mechanism by which proteins are able to fold into their native states, or by which they fail to do so and give rise to harmful aggregates that are associated with a wide range of debilitating human diseases.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>15664892</pmid><doi>10.1098/rsta.2004.1501</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2005-02, Vol.363 (1827), p.433-452
issn 1364-503X
1471-2962
language eng
recordid cdi_crossref_primary_10_1098_rsta_2004_1501
source MEDLINE; JSTOR Mathematics & Statistics; Free Full-Text Journals in Chemistry
subjects Aggregation
Amyloid Diseases
Amyloids
Computer Simulation
Computer Simulations
Energy Landscape
Energy Transfer
Globules
Hydrogen
Models, Chemical
Models, Molecular
Molecular structure
Molecules
Multiprotein Complexes - chemistry
Nuclear magnetic resonance
Phase Transition
Protein Aggregation
Protein Conformation
Protein Folding
Protein Misfolding
Proteins
Proteins - chemistry
Temperature
Topology
title Towards complete descriptions of the free–energy landscapes of proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20complete%20descriptions%20of%20the%20free%E2%80%93energy%20landscapes%20of%20proteins&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Vendruscolo,%20Michele&rft.date=2005-02-15&rft.volume=363&rft.issue=1827&rft.spage=433&rft.epage=452&rft.pages=433-452&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2004.1501&rft_dat=%3Cjstor_cross%3E30039579%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67376363&rft_id=info:pmid/15664892&rft_jstor_id=30039579&rfr_iscdi=true