The Role of H+3 in Planetary Atmospheres
Spectroscopic studies of the upper atmospheres of the giant planets using infrared wavelengths sensitive to the H+3 molecular ion show that this species plays a critical role in determining the physical conditions there. For Jupiter, we propose that the recently detected H+3 electrojet holds the key...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2000-09, Vol.358 (1774), p.2485-2502 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spectroscopic studies of the upper atmospheres of the giant planets using infrared wavelengths sensitive to the H+3 molecular ion show that this species plays a critical role in determining the physical conditions there. For Jupiter, we propose that the recently detected H+3 electrojet holds the key to the mechanism by which the equatorial plasma sheet is kept in (partial) co-rotation with the planet, and that this mechanism also provides a previously unconsidered source of energy that helps explain why the jovian thermosphere is considerably hotter than expected. For Saturn, we show that the H+3 auroral emission is ca. 1% of that of Jupiter because of the lower ionospheric/thermospheric temperature and the lower flux of ionizing particles precipitated there; it is probably unnecessary to invoke additional chemistry in the auroral/polar regions. For Uranus, we report further evidence that its emission intensity is controlled by the cycle of solar activity. And we propose that H+3 emission may just be detectable using current technology from some of the giant extra-solar planets that have been detected orbiting nearby stars, such as Tau Bootes. |
---|---|
ISSN: | 1364-503X 1471-2962 |
DOI: | 10.1098/rsta.2000.0662 |