A Problem in the Application of Inverse Methods to Tracer Data [and Discussion]

Attempts to apply inverse methods to the interpretation of tracer data usually seek some least squares solution of the flux divergence equations AC = S, where A is a matrix of transport coefficients, C a vector of concentrations and S a vector of sources/sinks. However, what is often really required...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences 1988-05, Vol.325 (1583), p.85-91
Hauptverfasser: Shepherd, J. G., Jenkins, W. J., Wunsch, C., J.-F. Minster
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1583
container_start_page 85
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences
container_volume 325
creator Shepherd, J. G.
Jenkins, W. J.
Wunsch, C.
J.-F. Minster
description Attempts to apply inverse methods to the interpretation of tracer data usually seek some least squares solution of the flux divergence equations AC = S, where A is a matrix of transport coefficients, C a vector of concentrations and S a vector of sources/sinks. However, what is often really required is a set of values for the elements of A, which will give a satisfactory prediction of the concentrations. This corresponds to finding a least squares solution of C = A$^{-1}$ S. The two problems are not equivalent. The latter corresponds to an extensively reweighted version of the former, where the weights depend on the solution (the elements of A). The former is linear in the elements of A: the latter is highly nonlinear. In addition, the matrix A is invariably sparse, and required to be so. However, A$^{-1}$ is not, nor is it guaranteed that its inverse will be if its elements are determined freely. It is not clear whether the standard methods of generalized inverse theory are applicable to the more difficult `real' problem nor, if they are not, what other methods might be used. It is, however, possible that solutions of the `real' problem, if they can be found, would be more informative.
doi_str_mv 10.1098/rsta.1988.0044
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsta_1988_0044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>38102</jstor_id><sourcerecordid>38102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-bb376a1bc565c0d4675b4d2c677283cb048d9808696605fc16d56dc5681049e03</originalsourceid><addsrcrecordid>eNp9kEtr3DAUhU1oIWnabRZZadGtJ1fWw_KmMOTRBFJSkikUShGyLHc0OJaRNAnTXx_ZLqGhNCtJ3HO-c3Wy7AjDAkMlTnyIaoErIRYAlO5lB5iWOC8qXrxJd8JpzoB838_ehbABwJiz4iC7WaKv3tWduUe2R3Ft0HIYOqtVtK5HrkVX_YPxwaAvJq5dE1B0aOWVNh6dqajQD9U36MwGvQ0hOX6-z962qgvmw5_zMPt2cb46vcyvbz5fnS6vc01xFfO6JiVXuNaMMw0N5SWraVNoXpaFILoGKppKgOAV58BajXnDeJPUAgOtDJDDbDFztXcheNPKwdt75XcSgxzrkGMdcqxDjnUkw8fZMKigVdd61Wsbnl2lAAZ4lJFZ5t0u7e-0NXEnN27r-_T8Pzy85rq9Wy1xRegDKZjFTBAJgmAoMcdC_rbDhBsFMgmkDWFr5CR7GfNv6vGcugnR-eevkNRRkYaf5uHa_lo_Wm_ki90mlHZ9NH2cUqc8wWS77To5NG0CnLwKcLshIf6ykicPBcXr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Problem in the Application of Inverse Methods to Tracer Data [and Discussion]</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Shepherd, J. G. ; Jenkins, W. J. ; Wunsch, C. ; J.-F. Minster</creator><creatorcontrib>Shepherd, J. G. ; Jenkins, W. J. ; Wunsch, C. ; J.-F. Minster</creatorcontrib><description>Attempts to apply inverse methods to the interpretation of tracer data usually seek some least squares solution of the flux divergence equations AC = S, where A is a matrix of transport coefficients, C a vector of concentrations and S a vector of sources/sinks. However, what is often really required is a set of values for the elements of A, which will give a satisfactory prediction of the concentrations. This corresponds to finding a least squares solution of C = A$^{-1}$ S. The two problems are not equivalent. The latter corresponds to an extensively reweighted version of the former, where the weights depend on the solution (the elements of A). The former is linear in the elements of A: the latter is highly nonlinear. In addition, the matrix A is invariably sparse, and required to be so. However, A$^{-1}$ is not, nor is it guaranteed that its inverse will be if its elements are determined freely. It is not clear whether the standard methods of generalized inverse theory are applicable to the more difficult `real' problem nor, if they are not, what other methods might be used. It is, however, possible that solutions of the `real' problem, if they can be found, would be more informative.</description><identifier>ISSN: 1364-503X</identifier><identifier>ISSN: 0080-4614</identifier><identifier>EISSN: 1471-2962</identifier><identifier>EISSN: 2054-0272</identifier><identifier>DOI: 10.1098/rsta.1988.0044</identifier><identifier>CODEN: PTRMAD</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Earth, ocean, space ; Error rates ; Exact sciences and technology ; External geophysics ; Inverse problems ; Least squares ; Linear equations ; Linear regression ; Matrices ; Nonlinearity ; Oceans ; Physics of the oceans ; Thermohaline structure and circulation. Turbulence and diffusion ; Transport phenomena ; Water conservation</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 1988-05, Vol.325 (1583), p.85-91</ispartof><rights>Copyright 1988 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c419t-bb376a1bc565c0d4675b4d2c677283cb048d9808696605fc16d56dc5681049e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/38102$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/38102$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,799,828,23910,23911,25119,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7805014$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shepherd, J. G.</creatorcontrib><creatorcontrib>Jenkins, W. J.</creatorcontrib><creatorcontrib>Wunsch, C.</creatorcontrib><creatorcontrib>J.-F. Minster</creatorcontrib><title>A Problem in the Application of Inverse Methods to Tracer Data [and Discussion]</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</title><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><description>Attempts to apply inverse methods to the interpretation of tracer data usually seek some least squares solution of the flux divergence equations AC = S, where A is a matrix of transport coefficients, C a vector of concentrations and S a vector of sources/sinks. However, what is often really required is a set of values for the elements of A, which will give a satisfactory prediction of the concentrations. This corresponds to finding a least squares solution of C = A$^{-1}$ S. The two problems are not equivalent. The latter corresponds to an extensively reweighted version of the former, where the weights depend on the solution (the elements of A). The former is linear in the elements of A: the latter is highly nonlinear. In addition, the matrix A is invariably sparse, and required to be so. However, A$^{-1}$ is not, nor is it guaranteed that its inverse will be if its elements are determined freely. It is not clear whether the standard methods of generalized inverse theory are applicable to the more difficult `real' problem nor, if they are not, what other methods might be used. It is, however, possible that solutions of the `real' problem, if they can be found, would be more informative.</description><subject>Earth, ocean, space</subject><subject>Error rates</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Inverse problems</subject><subject>Least squares</subject><subject>Linear equations</subject><subject>Linear regression</subject><subject>Matrices</subject><subject>Nonlinearity</subject><subject>Oceans</subject><subject>Physics of the oceans</subject><subject>Thermohaline structure and circulation. Turbulence and diffusion</subject><subject>Transport phenomena</subject><subject>Water conservation</subject><issn>1364-503X</issn><issn>0080-4614</issn><issn>1471-2962</issn><issn>2054-0272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAUhU1oIWnabRZZadGtJ1fWw_KmMOTRBFJSkikUShGyLHc0OJaRNAnTXx_ZLqGhNCtJ3HO-c3Wy7AjDAkMlTnyIaoErIRYAlO5lB5iWOC8qXrxJd8JpzoB838_ehbABwJiz4iC7WaKv3tWduUe2R3Ft0HIYOqtVtK5HrkVX_YPxwaAvJq5dE1B0aOWVNh6dqajQD9U36MwGvQ0hOX6-z962qgvmw5_zMPt2cb46vcyvbz5fnS6vc01xFfO6JiVXuNaMMw0N5SWraVNoXpaFILoGKppKgOAV58BajXnDeJPUAgOtDJDDbDFztXcheNPKwdt75XcSgxzrkGMdcqxDjnUkw8fZMKigVdd61Wsbnl2lAAZ4lJFZ5t0u7e-0NXEnN27r-_T8Pzy85rq9Wy1xRegDKZjFTBAJgmAoMcdC_rbDhBsFMgmkDWFr5CR7GfNv6vGcugnR-eevkNRRkYaf5uHa_lo_Wm_ki90mlHZ9NH2cUqc8wWS77To5NG0CnLwKcLshIf6ykicPBcXr</recordid><startdate>19880525</startdate><enddate>19880525</enddate><creator>Shepherd, J. G.</creator><creator>Jenkins, W. J.</creator><creator>Wunsch, C.</creator><creator>J.-F. Minster</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19880525</creationdate><title>A Problem in the Application of Inverse Methods to Tracer Data [and Discussion]</title><author>Shepherd, J. G. ; Jenkins, W. J. ; Wunsch, C. ; J.-F. Minster</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-bb376a1bc565c0d4675b4d2c677283cb048d9808696605fc16d56dc5681049e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Earth, ocean, space</topic><topic>Error rates</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Inverse problems</topic><topic>Least squares</topic><topic>Linear equations</topic><topic>Linear regression</topic><topic>Matrices</topic><topic>Nonlinearity</topic><topic>Oceans</topic><topic>Physics of the oceans</topic><topic>Thermohaline structure and circulation. Turbulence and diffusion</topic><topic>Transport phenomena</topic><topic>Water conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shepherd, J. G.</creatorcontrib><creatorcontrib>Jenkins, W. J.</creatorcontrib><creatorcontrib>Wunsch, C.</creatorcontrib><creatorcontrib>J.-F. Minster</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shepherd, J. G.</au><au>Jenkins, W. J.</au><au>Wunsch, C.</au><au>J.-F. Minster</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Problem in the Application of Inverse Methods to Tracer Data [and Discussion]</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. A</stitle><date>1988-05-25</date><risdate>1988</risdate><volume>325</volume><issue>1583</issue><spage>85</spage><epage>91</epage><pages>85-91</pages><issn>1364-503X</issn><issn>0080-4614</issn><eissn>1471-2962</eissn><eissn>2054-0272</eissn><coden>PTRMAD</coden><abstract>Attempts to apply inverse methods to the interpretation of tracer data usually seek some least squares solution of the flux divergence equations AC = S, where A is a matrix of transport coefficients, C a vector of concentrations and S a vector of sources/sinks. However, what is often really required is a set of values for the elements of A, which will give a satisfactory prediction of the concentrations. This corresponds to finding a least squares solution of C = A$^{-1}$ S. The two problems are not equivalent. The latter corresponds to an extensively reweighted version of the former, where the weights depend on the solution (the elements of A). The former is linear in the elements of A: the latter is highly nonlinear. In addition, the matrix A is invariably sparse, and required to be so. However, A$^{-1}$ is not, nor is it guaranteed that its inverse will be if its elements are determined freely. It is not clear whether the standard methods of generalized inverse theory are applicable to the more difficult `real' problem nor, if they are not, what other methods might be used. It is, however, possible that solutions of the `real' problem, if they can be found, would be more informative.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rsta.1988.0044</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 1988-05, Vol.325 (1583), p.85-91
issn 1364-503X
0080-4614
1471-2962
2054-0272
language eng
recordid cdi_crossref_primary_10_1098_rsta_1988_0044
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Earth, ocean, space
Error rates
Exact sciences and technology
External geophysics
Inverse problems
Least squares
Linear equations
Linear regression
Matrices
Nonlinearity
Oceans
Physics of the oceans
Thermohaline structure and circulation. Turbulence and diffusion
Transport phenomena
Water conservation
title A Problem in the Application of Inverse Methods to Tracer Data [and Discussion]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Problem%20in%20the%20Application%20of%20Inverse%20Methods%20to%20Tracer%20Data%20%5Band%20Discussion%5D&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical%20and%20physical%20sciences&rft.au=Shepherd,%20J.%20G.&rft.date=1988-05-25&rft.volume=325&rft.issue=1583&rft.spage=85&rft.epage=91&rft.pages=85-91&rft.issn=1364-503X&rft.eissn=1471-2962&rft.coden=PTRMAD&rft_id=info:doi/10.1098/rsta.1988.0044&rft_dat=%3Cjstor_cross%3E38102%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=38102&rfr_iscdi=true