New solution of Kepler's problem
It is well known how much labour has been bestowed by geometers on the solution of Kepler’s Problem, and what complicated results have been obtained for the coefficients in the expression for the Equation of the Center. I have lately found a new solution of this problem, which differs so strikingly...
Gespeichert in:
Veröffentlicht in: | Abstracts of the papers communicated to the Royal Society of London 1854-12, Vol.6, p.229-230 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | |
container_start_page | 229 |
container_title | Abstracts of the papers communicated to the Royal Society of London |
container_volume | 6 |
creator | Hansen, Peter Andreas |
description | It is well known how much labour has been bestowed by geometers on the solution of Kepler’s Problem, and what complicated results have been obtained for the coefficients in the expression for the Equation of the Center. I have lately found a new solution of this problem, which differs so strikingly from former solutions in this respect, that it leads to an unexpectedly simple law of coefficients. It is as follows :— |
doi_str_mv | 10.1098/rspl.1850.0083 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspl_1850_0083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_V84_QG7NBWP7_V</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2883-d64361e86a6d11b674aefe236cb64754ccd1f7a6606b4cd534dfcba115255abb3</originalsourceid><addsrcrecordid>eNp9j71OwzAURi0EEqWwMmdjSrBj-9odobQFUZXyV0bLcRwpJW0iuwXKA_DcJAR1AMFk3av7HX8HoWOCI4J78tT5qoiI5DjCWNId1Ikxp2GPULaLOpgCD7HkfB8deD_HGPeYFB0UTOxr4MtivcrLZVBmwbWtCutOfFC5Mins4hDtZbrw9uj77aLH4eChfxmOb0ZX_bNxaGIpaZgCo0CsBA0pIQkIpm1mYwomASY4MyYlmdAAGBJmUk5ZmplEE8JjznWS0C6KWq5xpffOZqpy-UK7jSJYNX6q8VONn2r86sBHG3Dlpi5WmtyuNmpert2yHtXd_XRMJKMv0ADiwRciHjaQZl1vcu_XVsUXoGocwYAZleo9r9T2pr2AHz__LkL_K_Jn_bBN5X5l37ay2j0rEFRwNZNM3Y7E5PxpKtSMfgIHPY7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New solution of Kepler's problem</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hansen, Peter Andreas</creator><creatorcontrib>Hansen, Peter Andreas</creatorcontrib><description>It is well known how much labour has been bestowed by geometers on the solution of Kepler’s Problem, and what complicated results have been obtained for the coefficients in the expression for the Equation of the Center. I have lately found a new solution of this problem, which differs so strikingly from former solutions in this respect, that it leads to an unexpectedly simple law of coefficients. It is as follows :—</description><identifier>ISSN: 0365-0855</identifier><identifier>EISSN: 2053-9134</identifier><identifier>DOI: 10.1098/rspl.1850.0083</identifier><language>eng</language><publisher>London: The Royal Society</publisher><ispartof>Abstracts of the papers communicated to the Royal Society of London, 1854-12, Vol.6, p.229-230</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hansen, Peter Andreas</creatorcontrib><title>New solution of Kepler's problem</title><title>Abstracts of the papers communicated to the Royal Society of London</title><addtitle>Abstr. Pap. Printed Phil. Trans. R. Soc. Lond</addtitle><addtitle>Abstr. Pap. Printed Phil. Trans. R. Soc. Lond</addtitle><description>It is well known how much labour has been bestowed by geometers on the solution of Kepler’s Problem, and what complicated results have been obtained for the coefficients in the expression for the Equation of the Center. I have lately found a new solution of this problem, which differs so strikingly from former solutions in this respect, that it leads to an unexpectedly simple law of coefficients. It is as follows :—</description><issn>0365-0855</issn><issn>2053-9134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1854</creationdate><recordtype>article</recordtype><recordid>eNp9j71OwzAURi0EEqWwMmdjSrBj-9odobQFUZXyV0bLcRwpJW0iuwXKA_DcJAR1AMFk3av7HX8HoWOCI4J78tT5qoiI5DjCWNId1Ikxp2GPULaLOpgCD7HkfB8deD_HGPeYFB0UTOxr4MtivcrLZVBmwbWtCutOfFC5Mins4hDtZbrw9uj77aLH4eChfxmOb0ZX_bNxaGIpaZgCo0CsBA0pIQkIpm1mYwomASY4MyYlmdAAGBJmUk5ZmplEE8JjznWS0C6KWq5xpffOZqpy-UK7jSJYNX6q8VONn2r86sBHG3Dlpi5WmtyuNmpert2yHtXd_XRMJKMv0ADiwRciHjaQZl1vcu_XVsUXoGocwYAZleo9r9T2pr2AHz__LkL_K_Jn_bBN5X5l37ay2j0rEFRwNZNM3Y7E5PxpKtSMfgIHPY7U</recordid><startdate>18541231</startdate><enddate>18541231</enddate><creator>Hansen, Peter Andreas</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>18541231</creationdate><title>New solution of Kepler's problem</title><author>Hansen, Peter Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2883-d64361e86a6d11b674aefe236cb64754ccd1f7a6606b4cd534dfcba115255abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1854</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Peter Andreas</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Abstracts of the papers communicated to the Royal Society of London</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Peter Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New solution of Kepler's problem</atitle><jtitle>Abstracts of the papers communicated to the Royal Society of London</jtitle><stitle>Abstr. Pap. Printed Phil. Trans. R. Soc. Lond</stitle><addtitle>Abstr. Pap. Printed Phil. Trans. R. Soc. Lond</addtitle><date>1854-12-31</date><risdate>1854</risdate><volume>6</volume><spage>229</spage><epage>230</epage><pages>229-230</pages><issn>0365-0855</issn><eissn>2053-9134</eissn><abstract>It is well known how much labour has been bestowed by geometers on the solution of Kepler’s Problem, and what complicated results have been obtained for the coefficients in the expression for the Equation of the Center. I have lately found a new solution of this problem, which differs so strikingly from former solutions in this respect, that it leads to an unexpectedly simple law of coefficients. It is as follows :—</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspl.1850.0083</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0365-0855 |
ispartof | Abstracts of the papers communicated to the Royal Society of London, 1854-12, Vol.6, p.229-230 |
issn | 0365-0855 2053-9134 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rspl_1850_0083 |
source | JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
title | New solution of Kepler's problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20solution%20of%20Kepler's%20problem&rft.jtitle=Abstracts%20of%20the%20papers%20communicated%20to%20the%20Royal%20Society%20of%20London&rft.au=Hansen,%20Peter%20Andreas&rft.date=1854-12-31&rft.volume=6&rft.spage=229&rft.epage=230&rft.pages=229-230&rft.issn=0365-0855&rft.eissn=2053-9134&rft_id=info:doi/10.1098/rspl.1850.0083&rft_dat=%3Cistex_cross%3Eark_67375_V84_QG7NBWP7_V%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |