New solution of Kepler's problem

It is well known how much labour has been bestowed by geometers on the solution of Kepler’s Problem, and what complicated results have been obtained for the coefficients in the expression for the Equation of the Center. I have lately found a new solution of this problem, which differs so strikingly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstracts of the papers communicated to the Royal Society of London 1854-12, Vol.6, p.229-230
1. Verfasser: Hansen, Peter Andreas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue
container_start_page 229
container_title Abstracts of the papers communicated to the Royal Society of London
container_volume 6
creator Hansen, Peter Andreas
description It is well known how much labour has been bestowed by geometers on the solution of Kepler’s Problem, and what complicated results have been obtained for the coefficients in the expression for the Equation of the Center. I have lately found a new solution of this problem, which differs so strikingly from former solutions in this respect, that it leads to an unexpectedly simple law of coefficients. It is as follows :—
doi_str_mv 10.1098/rspl.1850.0083
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspl_1850_0083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_V84_QG7NBWP7_V</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2883-d64361e86a6d11b674aefe236cb64754ccd1f7a6606b4cd534dfcba115255abb3</originalsourceid><addsrcrecordid>eNp9j71OwzAURi0EEqWwMmdjSrBj-9odobQFUZXyV0bLcRwpJW0iuwXKA_DcJAR1AMFk3av7HX8HoWOCI4J78tT5qoiI5DjCWNId1Ikxp2GPULaLOpgCD7HkfB8deD_HGPeYFB0UTOxr4MtivcrLZVBmwbWtCutOfFC5Mins4hDtZbrw9uj77aLH4eChfxmOb0ZX_bNxaGIpaZgCo0CsBA0pIQkIpm1mYwomASY4MyYlmdAAGBJmUk5ZmplEE8JjznWS0C6KWq5xpffOZqpy-UK7jSJYNX6q8VONn2r86sBHG3Dlpi5WmtyuNmpert2yHtXd_XRMJKMv0ADiwRciHjaQZl1vcu_XVsUXoGocwYAZleo9r9T2pr2AHz__LkL_K_Jn_bBN5X5l37ay2j0rEFRwNZNM3Y7E5PxpKtSMfgIHPY7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New solution of Kepler's problem</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hansen, Peter Andreas</creator><creatorcontrib>Hansen, Peter Andreas</creatorcontrib><description>It is well known how much labour has been bestowed by geometers on the solution of Kepler’s Problem, and what complicated results have been obtained for the coefficients in the expression for the Equation of the Center. I have lately found a new solution of this problem, which differs so strikingly from former solutions in this respect, that it leads to an unexpectedly simple law of coefficients. It is as follows :—</description><identifier>ISSN: 0365-0855</identifier><identifier>EISSN: 2053-9134</identifier><identifier>DOI: 10.1098/rspl.1850.0083</identifier><language>eng</language><publisher>London: The Royal Society</publisher><ispartof>Abstracts of the papers communicated to the Royal Society of London, 1854-12, Vol.6, p.229-230</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hansen, Peter Andreas</creatorcontrib><title>New solution of Kepler's problem</title><title>Abstracts of the papers communicated to the Royal Society of London</title><addtitle>Abstr. Pap. Printed Phil. Trans. R. Soc. Lond</addtitle><addtitle>Abstr. Pap. Printed Phil. Trans. R. Soc. Lond</addtitle><description>It is well known how much labour has been bestowed by geometers on the solution of Kepler’s Problem, and what complicated results have been obtained for the coefficients in the expression for the Equation of the Center. I have lately found a new solution of this problem, which differs so strikingly from former solutions in this respect, that it leads to an unexpectedly simple law of coefficients. It is as follows :—</description><issn>0365-0855</issn><issn>2053-9134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1854</creationdate><recordtype>article</recordtype><recordid>eNp9j71OwzAURi0EEqWwMmdjSrBj-9odobQFUZXyV0bLcRwpJW0iuwXKA_DcJAR1AMFk3av7HX8HoWOCI4J78tT5qoiI5DjCWNId1Ikxp2GPULaLOpgCD7HkfB8deD_HGPeYFB0UTOxr4MtivcrLZVBmwbWtCutOfFC5Mins4hDtZbrw9uj77aLH4eChfxmOb0ZX_bNxaGIpaZgCo0CsBA0pIQkIpm1mYwomASY4MyYlmdAAGBJmUk5ZmplEE8JjznWS0C6KWq5xpffOZqpy-UK7jSJYNX6q8VONn2r86sBHG3Dlpi5WmtyuNmpert2yHtXd_XRMJKMv0ADiwRciHjaQZl1vcu_XVsUXoGocwYAZleo9r9T2pr2AHz__LkL_K_Jn_bBN5X5l37ay2j0rEFRwNZNM3Y7E5PxpKtSMfgIHPY7U</recordid><startdate>18541231</startdate><enddate>18541231</enddate><creator>Hansen, Peter Andreas</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>18541231</creationdate><title>New solution of Kepler's problem</title><author>Hansen, Peter Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2883-d64361e86a6d11b674aefe236cb64754ccd1f7a6606b4cd534dfcba115255abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1854</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Peter Andreas</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Abstracts of the papers communicated to the Royal Society of London</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Peter Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New solution of Kepler's problem</atitle><jtitle>Abstracts of the papers communicated to the Royal Society of London</jtitle><stitle>Abstr. Pap. Printed Phil. Trans. R. Soc. Lond</stitle><addtitle>Abstr. Pap. Printed Phil. Trans. R. Soc. Lond</addtitle><date>1854-12-31</date><risdate>1854</risdate><volume>6</volume><spage>229</spage><epage>230</epage><pages>229-230</pages><issn>0365-0855</issn><eissn>2053-9134</eissn><abstract>It is well known how much labour has been bestowed by geometers on the solution of Kepler’s Problem, and what complicated results have been obtained for the coefficients in the expression for the Equation of the Center. I have lately found a new solution of this problem, which differs so strikingly from former solutions in this respect, that it leads to an unexpectedly simple law of coefficients. It is as follows :—</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspl.1850.0083</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0365-0855
ispartof Abstracts of the papers communicated to the Royal Society of London, 1854-12, Vol.6, p.229-230
issn 0365-0855
2053-9134
language eng
recordid cdi_crossref_primary_10_1098_rspl_1850_0083
source JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
title New solution of Kepler's problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20solution%20of%20Kepler's%20problem&rft.jtitle=Abstracts%20of%20the%20papers%20communicated%20to%20the%20Royal%20Society%20of%20London&rft.au=Hansen,%20Peter%20Andreas&rft.date=1854-12-31&rft.volume=6&rft.spage=229&rft.epage=230&rft.pages=229-230&rft.issn=0365-0855&rft.eissn=2053-9134&rft_id=info:doi/10.1098/rspl.1850.0083&rft_dat=%3Cistex_cross%3Eark_67375_V84_QG7NBWP7_V%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true