Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size

Maintaining high rates of photosynthesis in leaves requires efficient movement of CO from the atmosphere to the mesophyll cells inside the leaf where CO is converted into sugar. CO diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2021-02, Vol.288 (1945), p.20203145
Hauptverfasser: Théroux-Rancourt, Guillaume, Roddy, Adam B, Earles, J Mason, Gilbert, Matthew E, Zwieniecki, Maciej A, Boyce, C Kevin, Tholen, Danny, McElrone, Andrew J, Simonin, Kevin A, Brodersen, Craig R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1945
container_start_page 20203145
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 288
creator Théroux-Rancourt, Guillaume
Roddy, Adam B
Earles, J Mason
Gilbert, Matthew E
Zwieniecki, Maciej A
Boyce, C Kevin
Tholen, Danny
McElrone, Andrew J
Simonin, Kevin A
Brodersen, Craig R
description Maintaining high rates of photosynthesis in leaves requires efficient movement of CO from the atmosphere to the mesophyll cells inside the leaf where CO is converted into sugar. CO diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO diffusion into and through the leaf, maintaining high rates of CO supply to the leaf mesophyll despite declining atmospheric CO levels during the Cretaceous.
doi_str_mv 10.1098/rspb.2020.3145
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspb_2020_3145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33622134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-b7721d26f0cdc03513a494bfb31f1ae625412a468f5cccde0e65f4e7f4569fe73</originalsourceid><addsrcrecordid>eNo90DtPwzAUBWALgWgprIzo_oEEv52MqIKCVNQFJobIsa-LUR5V3CLKr4dQYLo60j1n-Ai5ZDRntCyuh7Spc045zQWT6ohMmTQs46WSx2RKS82zQio-IWcpvVFKS1WoUzIRQnPOhJySl0f7EdtdC_MVcPAxhF2KfQexS9EjNGjfMUFM0MQ2btFDvYftK0JytondGvoADpsGUvxEsJ2HNXZ9iz_5nJwE2yS8-L0z8nx3-zS_z5arxcP8Zpk5Zsw2q43hzHMdqPOOCsWElaWsQy1YYBY1V5JxK3URlHPOI0WtgkQTpNJlQCNmJD_suqFPacBQbYbY2mFfMVqNStWoVI1K1aj0Xbg6FDa7ukX___7HIr4Abbxjlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size</title><source>MEDLINE</source><source>PubMed Central</source><creator>Théroux-Rancourt, Guillaume ; Roddy, Adam B ; Earles, J Mason ; Gilbert, Matthew E ; Zwieniecki, Maciej A ; Boyce, C Kevin ; Tholen, Danny ; McElrone, Andrew J ; Simonin, Kevin A ; Brodersen, Craig R</creator><creatorcontrib>Théroux-Rancourt, Guillaume ; Roddy, Adam B ; Earles, J Mason ; Gilbert, Matthew E ; Zwieniecki, Maciej A ; Boyce, C Kevin ; Tholen, Danny ; McElrone, Andrew J ; Simonin, Kevin A ; Brodersen, Craig R</creatorcontrib><description>Maintaining high rates of photosynthesis in leaves requires efficient movement of CO from the atmosphere to the mesophyll cells inside the leaf where CO is converted into sugar. CO diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO diffusion into and through the leaf, maintaining high rates of CO supply to the leaf mesophyll despite declining atmospheric CO levels during the Cretaceous.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2020.3145</identifier><identifier>PMID: 33622134</identifier><language>eng</language><publisher>England</publisher><subject>Carbon Dioxide ; Cell Size ; Genome Size ; Mesophyll Cells ; Photosynthesis ; Plant Leaves</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2021-02, Vol.288 (1945), p.20203145</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c177t-b7721d26f0cdc03513a494bfb31f1ae625412a468f5cccde0e65f4e7f4569fe73</citedby><cites>FETCH-LOGICAL-c177t-b7721d26f0cdc03513a494bfb31f1ae625412a468f5cccde0e65f4e7f4569fe73</cites><orcidid>0000-0002-2591-0524 ; 0000-0002-8345-9671 ; 0000-0002-3980-6066 ; 0000-0002-4423-8729 ; 0000-0002-6761-7975 ; 0000-0002-3774-4455 ; 0000-0002-4990-580X ; 0000-0002-0924-2570 ; 0000-0002-9517-0939 ; 0000-0001-9466-4761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33622134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Théroux-Rancourt, Guillaume</creatorcontrib><creatorcontrib>Roddy, Adam B</creatorcontrib><creatorcontrib>Earles, J Mason</creatorcontrib><creatorcontrib>Gilbert, Matthew E</creatorcontrib><creatorcontrib>Zwieniecki, Maciej A</creatorcontrib><creatorcontrib>Boyce, C Kevin</creatorcontrib><creatorcontrib>Tholen, Danny</creatorcontrib><creatorcontrib>McElrone, Andrew J</creatorcontrib><creatorcontrib>Simonin, Kevin A</creatorcontrib><creatorcontrib>Brodersen, Craig R</creatorcontrib><title>Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc Biol Sci</addtitle><description>Maintaining high rates of photosynthesis in leaves requires efficient movement of CO from the atmosphere to the mesophyll cells inside the leaf where CO is converted into sugar. CO diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO diffusion into and through the leaf, maintaining high rates of CO supply to the leaf mesophyll despite declining atmospheric CO levels during the Cretaceous.</description><subject>Carbon Dioxide</subject><subject>Cell Size</subject><subject>Genome Size</subject><subject>Mesophyll Cells</subject><subject>Photosynthesis</subject><subject>Plant Leaves</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90DtPwzAUBWALgWgprIzo_oEEv52MqIKCVNQFJobIsa-LUR5V3CLKr4dQYLo60j1n-Ai5ZDRntCyuh7Spc045zQWT6ohMmTQs46WSx2RKS82zQio-IWcpvVFKS1WoUzIRQnPOhJySl0f7EdtdC_MVcPAxhF2KfQexS9EjNGjfMUFM0MQ2btFDvYftK0JytondGvoADpsGUvxEsJ2HNXZ9iz_5nJwE2yS8-L0z8nx3-zS_z5arxcP8Zpk5Zsw2q43hzHMdqPOOCsWElaWsQy1YYBY1V5JxK3URlHPOI0WtgkQTpNJlQCNmJD_suqFPacBQbYbY2mFfMVqNStWoVI1K1aj0Xbg6FDa7ukX___7HIr4Abbxjlg</recordid><startdate>20210224</startdate><enddate>20210224</enddate><creator>Théroux-Rancourt, Guillaume</creator><creator>Roddy, Adam B</creator><creator>Earles, J Mason</creator><creator>Gilbert, Matthew E</creator><creator>Zwieniecki, Maciej A</creator><creator>Boyce, C Kevin</creator><creator>Tholen, Danny</creator><creator>McElrone, Andrew J</creator><creator>Simonin, Kevin A</creator><creator>Brodersen, Craig R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2591-0524</orcidid><orcidid>https://orcid.org/0000-0002-8345-9671</orcidid><orcidid>https://orcid.org/0000-0002-3980-6066</orcidid><orcidid>https://orcid.org/0000-0002-4423-8729</orcidid><orcidid>https://orcid.org/0000-0002-6761-7975</orcidid><orcidid>https://orcid.org/0000-0002-3774-4455</orcidid><orcidid>https://orcid.org/0000-0002-4990-580X</orcidid><orcidid>https://orcid.org/0000-0002-0924-2570</orcidid><orcidid>https://orcid.org/0000-0002-9517-0939</orcidid><orcidid>https://orcid.org/0000-0001-9466-4761</orcidid></search><sort><creationdate>20210224</creationdate><title>Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size</title><author>Théroux-Rancourt, Guillaume ; Roddy, Adam B ; Earles, J Mason ; Gilbert, Matthew E ; Zwieniecki, Maciej A ; Boyce, C Kevin ; Tholen, Danny ; McElrone, Andrew J ; Simonin, Kevin A ; Brodersen, Craig R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-b7721d26f0cdc03513a494bfb31f1ae625412a468f5cccde0e65f4e7f4569fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon Dioxide</topic><topic>Cell Size</topic><topic>Genome Size</topic><topic>Mesophyll Cells</topic><topic>Photosynthesis</topic><topic>Plant Leaves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Théroux-Rancourt, Guillaume</creatorcontrib><creatorcontrib>Roddy, Adam B</creatorcontrib><creatorcontrib>Earles, J Mason</creatorcontrib><creatorcontrib>Gilbert, Matthew E</creatorcontrib><creatorcontrib>Zwieniecki, Maciej A</creatorcontrib><creatorcontrib>Boyce, C Kevin</creatorcontrib><creatorcontrib>Tholen, Danny</creatorcontrib><creatorcontrib>McElrone, Andrew J</creatorcontrib><creatorcontrib>Simonin, Kevin A</creatorcontrib><creatorcontrib>Brodersen, Craig R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Théroux-Rancourt, Guillaume</au><au>Roddy, Adam B</au><au>Earles, J Mason</au><au>Gilbert, Matthew E</au><au>Zwieniecki, Maciej A</au><au>Boyce, C Kevin</au><au>Tholen, Danny</au><au>McElrone, Andrew J</au><au>Simonin, Kevin A</au><au>Brodersen, Craig R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>Proc Biol Sci</addtitle><date>2021-02-24</date><risdate>2021</risdate><volume>288</volume><issue>1945</issue><spage>20203145</spage><pages>20203145-</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Maintaining high rates of photosynthesis in leaves requires efficient movement of CO from the atmosphere to the mesophyll cells inside the leaf where CO is converted into sugar. CO diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO diffusion into and through the leaf, maintaining high rates of CO supply to the leaf mesophyll despite declining atmospheric CO levels during the Cretaceous.</abstract><cop>England</cop><pmid>33622134</pmid><doi>10.1098/rspb.2020.3145</doi><orcidid>https://orcid.org/0000-0002-2591-0524</orcidid><orcidid>https://orcid.org/0000-0002-8345-9671</orcidid><orcidid>https://orcid.org/0000-0002-3980-6066</orcidid><orcidid>https://orcid.org/0000-0002-4423-8729</orcidid><orcidid>https://orcid.org/0000-0002-6761-7975</orcidid><orcidid>https://orcid.org/0000-0002-3774-4455</orcidid><orcidid>https://orcid.org/0000-0002-4990-580X</orcidid><orcidid>https://orcid.org/0000-0002-0924-2570</orcidid><orcidid>https://orcid.org/0000-0002-9517-0939</orcidid><orcidid>https://orcid.org/0000-0001-9466-4761</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2021-02, Vol.288 (1945), p.20203145
issn 0962-8452
1471-2954
language eng
recordid cdi_crossref_primary_10_1098_rspb_2020_3145
source MEDLINE; PubMed Central
subjects Carbon Dioxide
Cell Size
Genome Size
Mesophyll Cells
Photosynthesis
Plant Leaves
title Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20CO%202%20diffusion%20inside%20leaves%20is%20limited%20by%20the%20scaling%20of%20cell%20size%20and%20genome%20size&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Th%C3%A9roux-Rancourt,%20Guillaume&rft.date=2021-02-24&rft.volume=288&rft.issue=1945&rft.spage=20203145&rft.pages=20203145-&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2020.3145&rft_dat=%3Cpubmed_cross%3E33622134%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33622134&rfr_iscdi=true