Recurrent cerebellar architecture solves the motor-error problem

Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2004-04, Vol.271 (1541), p.789-796
Hauptverfasser: Porrill, John, Dean, Paul, Stone, James V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 796
container_issue 1541
container_start_page 789
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 271
creator Porrill, John
Dean, Paul
Stone, James V.
description Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex.
doi_str_mv 10.1098/rspb.2003.2658
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspb_2003_2658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4142509</jstor_id><sourcerecordid>4142509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-5cded109bc719b7d4fa88b5a6d4117d73974cc494dfe7b90c4adc34110aeb9113</originalsourceid><addsrcrecordid>eNqFks2P0zAQxSMEYsvClRNCOXFL8cR2HF9goXwUsRKrXT6OVuI4W5e0DuOkUP56nKYqVIjlZFnvN29m_BxFD4FMgcj8Kfq2nKaE0Gma8fxWNAEmIEklZ7ejCZFZmuSMpyfRPe-XhBDJc343OgGech7USXR2aXSPaNZdrA2a0jRNgXGBemE7o7seTexdszE-7hYmXrnOYWIQHcYturIxq_vRnbpovHmwP0-jT29ef5zNk_MPb9_NXpwnWqRZl3BdmSpMXGoBshQVq4s8L3mRVQxAVIJKwbRmklW1EaUkmhWVpkEjhSklAD2Nno2-bV-uTKXDxFg0qkW7KnCrXGHVsbK2C3XtNgoyCZlIg8GTvQG6b73xnVpZr4d918b1XmWZIEJk8r8gCMFpTlkApyOo0XmPpj5MA0QN6aghHTWko4Z0QsHjP3f4je_jCAAdAXTb8JhOW9Nt1dL1uA7Xf9v6m6oury5egpRkkwqwwBkoklMgGQUA9dO2O7sBUAFQ1vveqB123Obvro_GrksfPsVhFwYsDbsEORll6zvz4yAX-FVlggquPudMvbqQX-az91dqHvjnI7-w14vvFo062mbXXLt1F9LdzbmbUORS1X0TvkFVBwe40cFtW_TlUTH9BTz6BNU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17753834</pqid></control><display><type>article</type><title>Recurrent cerebellar architecture solves the motor-error problem</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Porrill, John ; Dean, Paul ; Stone, James V.</creator><creatorcontrib>Porrill, John ; Dean, Paul ; Stone, James V.</creatorcontrib><description>Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2003.2658</identifier><identifier>PMID: 15255096</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Architectural models ; Architecture ; Brain stem ; Cerebellum ; Cerebellum - physiology ; Connectivity ; Efferent Pathways ; Eye movements ; Learning - physiology ; Microelectronics ; Models, Neurological ; Modularity ; Motor ability ; Motor Control ; Movement - physiology ; Psychomotor Performance - physiology ; Purkinje Cells - physiology ; Reflex, Vestibulo-Ocular - physiology ; Synaptic Transmission - physiology ; Vestibular ; Vestibulo ocular reflex</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2004-04, Vol.271 (1541), p.789-796</ispartof><rights>Copyright 2004 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-5cded109bc719b7d4fa88b5a6d4117d73974cc494dfe7b90c4adc34110aeb9113</citedby><cites>FETCH-LOGICAL-c726t-5cded109bc719b7d4fa88b5a6d4117d73974cc494dfe7b90c4adc34110aeb9113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4142509$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4142509$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15255096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Porrill, John</creatorcontrib><creatorcontrib>Dean, Paul</creatorcontrib><creatorcontrib>Stone, James V.</creatorcontrib><title>Recurrent cerebellar architecture solves the motor-error problem</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc Biol Sci</addtitle><description>Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex.</description><subject>Architectural models</subject><subject>Architecture</subject><subject>Brain stem</subject><subject>Cerebellum</subject><subject>Cerebellum - physiology</subject><subject>Connectivity</subject><subject>Efferent Pathways</subject><subject>Eye movements</subject><subject>Learning - physiology</subject><subject>Microelectronics</subject><subject>Models, Neurological</subject><subject>Modularity</subject><subject>Motor ability</subject><subject>Motor Control</subject><subject>Movement - physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Purkinje Cells - physiology</subject><subject>Reflex, Vestibulo-Ocular - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>Vestibular</subject><subject>Vestibulo ocular reflex</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks2P0zAQxSMEYsvClRNCOXFL8cR2HF9goXwUsRKrXT6OVuI4W5e0DuOkUP56nKYqVIjlZFnvN29m_BxFD4FMgcj8Kfq2nKaE0Gma8fxWNAEmIEklZ7ejCZFZmuSMpyfRPe-XhBDJc343OgGech7USXR2aXSPaNZdrA2a0jRNgXGBemE7o7seTexdszE-7hYmXrnOYWIQHcYturIxq_vRnbpovHmwP0-jT29ef5zNk_MPb9_NXpwnWqRZl3BdmSpMXGoBshQVq4s8L3mRVQxAVIJKwbRmklW1EaUkmhWVpkEjhSklAD2Nno2-bV-uTKXDxFg0qkW7KnCrXGHVsbK2C3XtNgoyCZlIg8GTvQG6b73xnVpZr4d918b1XmWZIEJk8r8gCMFpTlkApyOo0XmPpj5MA0QN6aghHTWko4Z0QsHjP3f4je_jCAAdAXTb8JhOW9Nt1dL1uA7Xf9v6m6oury5egpRkkwqwwBkoklMgGQUA9dO2O7sBUAFQ1vveqB123Obvro_GrksfPsVhFwYsDbsEORll6zvz4yAX-FVlggquPudMvbqQX-az91dqHvjnI7-w14vvFo062mbXXLt1F9LdzbmbUORS1X0TvkFVBwe40cFtW_TlUTH9BTz6BNU</recordid><startdate>20040422</startdate><enddate>20040422</enddate><creator>Porrill, John</creator><creator>Dean, Paul</creator><creator>Stone, James V.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040422</creationdate><title>Recurrent cerebellar architecture solves the motor-error problem</title><author>Porrill, John ; Dean, Paul ; Stone, James V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-5cded109bc719b7d4fa88b5a6d4117d73974cc494dfe7b90c4adc34110aeb9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Architectural models</topic><topic>Architecture</topic><topic>Brain stem</topic><topic>Cerebellum</topic><topic>Cerebellum - physiology</topic><topic>Connectivity</topic><topic>Efferent Pathways</topic><topic>Eye movements</topic><topic>Learning - physiology</topic><topic>Microelectronics</topic><topic>Models, Neurological</topic><topic>Modularity</topic><topic>Motor ability</topic><topic>Motor Control</topic><topic>Movement - physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Purkinje Cells - physiology</topic><topic>Reflex, Vestibulo-Ocular - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>Vestibular</topic><topic>Vestibulo ocular reflex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porrill, John</creatorcontrib><creatorcontrib>Dean, Paul</creatorcontrib><creatorcontrib>Stone, James V.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porrill, John</au><au>Dean, Paul</au><au>Stone, James V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent cerebellar architecture solves the motor-error problem</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>Proc Biol Sci</addtitle><date>2004-04-22</date><risdate>2004</risdate><volume>271</volume><issue>1541</issue><spage>789</spage><epage>796</epage><pages>789-796</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>15255096</pmid><doi>10.1098/rspb.2003.2658</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2004-04, Vol.271 (1541), p.789-796
issn 0962-8452
1471-2954
language eng
recordid cdi_crossref_primary_10_1098_rspb_2003_2658
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Architectural models
Architecture
Brain stem
Cerebellum
Cerebellum - physiology
Connectivity
Efferent Pathways
Eye movements
Learning - physiology
Microelectronics
Models, Neurological
Modularity
Motor ability
Motor Control
Movement - physiology
Psychomotor Performance - physiology
Purkinje Cells - physiology
Reflex, Vestibulo-Ocular - physiology
Synaptic Transmission - physiology
Vestibular
Vestibulo ocular reflex
title Recurrent cerebellar architecture solves the motor-error problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20cerebellar%20architecture%20solves%20the%20motor-error%20problem&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Porrill,%20John&rft.date=2004-04-22&rft.volume=271&rft.issue=1541&rft.spage=789&rft.epage=796&rft.pages=789-796&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2003.2658&rft_dat=%3Cjstor_cross%3E4142509%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17753834&rft_id=info:pmid/15255096&rft_jstor_id=4142509&rfr_iscdi=true