Recurrent cerebellar architecture solves the motor-error problem
Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2004-04, Vol.271 (1541), p.789-796 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 796 |
---|---|
container_issue | 1541 |
container_start_page | 789 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 271 |
creator | Porrill, John Dean, Paul Stone, James V. |
description | Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex. |
doi_str_mv | 10.1098/rspb.2003.2658 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspb_2003_2658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4142509</jstor_id><sourcerecordid>4142509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-5cded109bc719b7d4fa88b5a6d4117d73974cc494dfe7b90c4adc34110aeb9113</originalsourceid><addsrcrecordid>eNqFks2P0zAQxSMEYsvClRNCOXFL8cR2HF9goXwUsRKrXT6OVuI4W5e0DuOkUP56nKYqVIjlZFnvN29m_BxFD4FMgcj8Kfq2nKaE0Gma8fxWNAEmIEklZ7ejCZFZmuSMpyfRPe-XhBDJc343OgGech7USXR2aXSPaNZdrA2a0jRNgXGBemE7o7seTexdszE-7hYmXrnOYWIQHcYturIxq_vRnbpovHmwP0-jT29ef5zNk_MPb9_NXpwnWqRZl3BdmSpMXGoBshQVq4s8L3mRVQxAVIJKwbRmklW1EaUkmhWVpkEjhSklAD2Nno2-bV-uTKXDxFg0qkW7KnCrXGHVsbK2C3XtNgoyCZlIg8GTvQG6b73xnVpZr4d918b1XmWZIEJk8r8gCMFpTlkApyOo0XmPpj5MA0QN6aghHTWko4Z0QsHjP3f4je_jCAAdAXTb8JhOW9Nt1dL1uA7Xf9v6m6oury5egpRkkwqwwBkoklMgGQUA9dO2O7sBUAFQ1vveqB123Obvro_GrksfPsVhFwYsDbsEORll6zvz4yAX-FVlggquPudMvbqQX-az91dqHvjnI7-w14vvFo062mbXXLt1F9LdzbmbUORS1X0TvkFVBwe40cFtW_TlUTH9BTz6BNU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17753834</pqid></control><display><type>article</type><title>Recurrent cerebellar architecture solves the motor-error problem</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Porrill, John ; Dean, Paul ; Stone, James V.</creator><creatorcontrib>Porrill, John ; Dean, Paul ; Stone, James V.</creatorcontrib><description>Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2003.2658</identifier><identifier>PMID: 15255096</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Architectural models ; Architecture ; Brain stem ; Cerebellum ; Cerebellum - physiology ; Connectivity ; Efferent Pathways ; Eye movements ; Learning - physiology ; Microelectronics ; Models, Neurological ; Modularity ; Motor ability ; Motor Control ; Movement - physiology ; Psychomotor Performance - physiology ; Purkinje Cells - physiology ; Reflex, Vestibulo-Ocular - physiology ; Synaptic Transmission - physiology ; Vestibular ; Vestibulo ocular reflex</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2004-04, Vol.271 (1541), p.789-796</ispartof><rights>Copyright 2004 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-5cded109bc719b7d4fa88b5a6d4117d73974cc494dfe7b90c4adc34110aeb9113</citedby><cites>FETCH-LOGICAL-c726t-5cded109bc719b7d4fa88b5a6d4117d73974cc494dfe7b90c4adc34110aeb9113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4142509$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4142509$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15255096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Porrill, John</creatorcontrib><creatorcontrib>Dean, Paul</creatorcontrib><creatorcontrib>Stone, James V.</creatorcontrib><title>Recurrent cerebellar architecture solves the motor-error problem</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc Biol Sci</addtitle><description>Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex.</description><subject>Architectural models</subject><subject>Architecture</subject><subject>Brain stem</subject><subject>Cerebellum</subject><subject>Cerebellum - physiology</subject><subject>Connectivity</subject><subject>Efferent Pathways</subject><subject>Eye movements</subject><subject>Learning - physiology</subject><subject>Microelectronics</subject><subject>Models, Neurological</subject><subject>Modularity</subject><subject>Motor ability</subject><subject>Motor Control</subject><subject>Movement - physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Purkinje Cells - physiology</subject><subject>Reflex, Vestibulo-Ocular - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>Vestibular</subject><subject>Vestibulo ocular reflex</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks2P0zAQxSMEYsvClRNCOXFL8cR2HF9goXwUsRKrXT6OVuI4W5e0DuOkUP56nKYqVIjlZFnvN29m_BxFD4FMgcj8Kfq2nKaE0Gma8fxWNAEmIEklZ7ejCZFZmuSMpyfRPe-XhBDJc343OgGech7USXR2aXSPaNZdrA2a0jRNgXGBemE7o7seTexdszE-7hYmXrnOYWIQHcYturIxq_vRnbpovHmwP0-jT29ef5zNk_MPb9_NXpwnWqRZl3BdmSpMXGoBshQVq4s8L3mRVQxAVIJKwbRmklW1EaUkmhWVpkEjhSklAD2Nno2-bV-uTKXDxFg0qkW7KnCrXGHVsbK2C3XtNgoyCZlIg8GTvQG6b73xnVpZr4d918b1XmWZIEJk8r8gCMFpTlkApyOo0XmPpj5MA0QN6aghHTWko4Z0QsHjP3f4je_jCAAdAXTb8JhOW9Nt1dL1uA7Xf9v6m6oury5egpRkkwqwwBkoklMgGQUA9dO2O7sBUAFQ1vveqB123Obvro_GrksfPsVhFwYsDbsEORll6zvz4yAX-FVlggquPudMvbqQX-az91dqHvjnI7-w14vvFo062mbXXLt1F9LdzbmbUORS1X0TvkFVBwe40cFtW_TlUTH9BTz6BNU</recordid><startdate>20040422</startdate><enddate>20040422</enddate><creator>Porrill, John</creator><creator>Dean, Paul</creator><creator>Stone, James V.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040422</creationdate><title>Recurrent cerebellar architecture solves the motor-error problem</title><author>Porrill, John ; Dean, Paul ; Stone, James V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-5cded109bc719b7d4fa88b5a6d4117d73974cc494dfe7b90c4adc34110aeb9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Architectural models</topic><topic>Architecture</topic><topic>Brain stem</topic><topic>Cerebellum</topic><topic>Cerebellum - physiology</topic><topic>Connectivity</topic><topic>Efferent Pathways</topic><topic>Eye movements</topic><topic>Learning - physiology</topic><topic>Microelectronics</topic><topic>Models, Neurological</topic><topic>Modularity</topic><topic>Motor ability</topic><topic>Motor Control</topic><topic>Movement - physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Purkinje Cells - physiology</topic><topic>Reflex, Vestibulo-Ocular - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>Vestibular</topic><topic>Vestibulo ocular reflex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porrill, John</creatorcontrib><creatorcontrib>Dean, Paul</creatorcontrib><creatorcontrib>Stone, James V.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porrill, John</au><au>Dean, Paul</au><au>Stone, James V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent cerebellar architecture solves the motor-error problem</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>Proc Biol Sci</addtitle><date>2004-04-22</date><risdate>2004</risdate><volume>271</volume><issue>1541</issue><spage>789</spage><epage>796</epage><pages>789-796</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>15255096</pmid><doi>10.1098/rspb.2003.2658</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2004-04, Vol.271 (1541), p.789-796 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rspb_2003_2658 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central |
subjects | Architectural models Architecture Brain stem Cerebellum Cerebellum - physiology Connectivity Efferent Pathways Eye movements Learning - physiology Microelectronics Models, Neurological Modularity Motor ability Motor Control Movement - physiology Psychomotor Performance - physiology Purkinje Cells - physiology Reflex, Vestibulo-Ocular - physiology Synaptic Transmission - physiology Vestibular Vestibulo ocular reflex |
title | Recurrent cerebellar architecture solves the motor-error problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20cerebellar%20architecture%20solves%20the%20motor-error%20problem&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Porrill,%20John&rft.date=2004-04-22&rft.volume=271&rft.issue=1541&rft.spage=789&rft.epage=796&rft.pages=789-796&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2003.2658&rft_dat=%3Cjstor_cross%3E4142509%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17753834&rft_id=info:pmid/15255096&rft_jstor_id=4142509&rfr_iscdi=true |