Revealing new dynamical patterns in a reaction–diffusion model with cyclic competition via a novel computational framework
Understanding how patterns and travelling waves form in chemical and biological reaction–diffusion models is an area which has been widely researched, yet is still experiencing fast development. Surprisingly enough, we still do not have a clear understanding about all possible types of dynamical reg...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2018-05, Vol.474 (2213), p.20170608-20170608 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20170608 |
---|---|
container_issue | 2213 |
container_start_page | 20170608 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 474 |
creator | Cangiani, A. Georgoulis, E. H. Morozov, A. Yu Sutton, O. J. |
description | Understanding how patterns and travelling waves form in chemical and biological reaction–diffusion models is an area which has been widely researched, yet is still experiencing fast development. Surprisingly enough, we still do not have a clear understanding about all possible types of dynamical regimes in classical reaction–diffusion models, such as Lotka–Volterra competition models with spatial dependence. In this study, we demonstrate some new types of wave propagation and pattern formation in a classical three species cyclic competition model with spatial diffusion, which have been so far missed in the literature. These new patterns are characterized by a high regularity in space, but are different from patterns previously known to exist in reaction–diffusion models, and may have important applications in improving our understanding of biological pattern formation and invasion theory. Finding these new patterns is made technically possible by using an automatic adaptive finite element method driven by a novel a posteriori error estimate which is proved to provide a reliable bound for the error of the numerical method. We demonstrate how this numerical framework allows us to easily explore the dynamical patterns in both two and three spatial dimensions. |
doi_str_mv | 10.1098/rspa.2017.0608 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_2017_0608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2053276873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-7bec1d680601f3f5caebba6b9786a8114bf32286f69407bb264e3f36140361013</originalsourceid><addsrcrecordid>eNp9kU9v1yAYxxujcXN69WhIvHjpT_4V6MVkWXSaLNFMPRNK6cbWQgXaX2p28D34Dn0lUn9zuiV6AQKf5_Pw5FsUTxHcIFiLlyGOaoMh4hvIoLhX7CPKUYlryu7nM2G0rCBGe8WjGC8ghHUl-MNiD9dCcE7pfnF1amajeuvOgDNb0C5ODVarHowqJRNcBNYBBYJROlnvfnz73tqum2I-g8G3pgdbm86BXnRvNdB-GE2yKwlmq3Kh83Nm1vspqfU-q7ugBrP14fJx8aBTfTRPrveD4vOb15-O3pYn74_fHR2elLpiOJW8MRq1TOQJUUe6SivTNIo1NRdMCYRo0xGMBetYTSFvGsyoIR1hiMK8QEQOilc77zg1g2m1cSmoXo7BDios0isrb784ey7P_CyruoasFlnw4loQ_JfJxCQHG7Xpe-WMn6LEsCKYM8FJRp_fQS_8FPLYK0UZFQziVbjZUTr4GIPpbj6DoFyDlWuwcg1WrsHmgmd_j3CD_04yA2QHBL_kZl5bk5Y_vf-pvfxf1enHD4cz5dRijIjMPIKcEkrkVzvuVPlR2hgnI38ht_V3u_0EKM3XPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046486028</pqid></control><display><type>article</type><title>Revealing new dynamical patterns in a reaction–diffusion model with cyclic competition via a novel computational framework</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Cangiani, A. ; Georgoulis, E. H. ; Morozov, A. Yu ; Sutton, O. J.</creator><creatorcontrib>Cangiani, A. ; Georgoulis, E. H. ; Morozov, A. Yu ; Sutton, O. J.</creatorcontrib><description>Understanding how patterns and travelling waves form in chemical and biological reaction–diffusion models is an area which has been widely researched, yet is still experiencing fast development. Surprisingly enough, we still do not have a clear understanding about all possible types of dynamical regimes in classical reaction–diffusion models, such as Lotka–Volterra competition models with spatial dependence. In this study, we demonstrate some new types of wave propagation and pattern formation in a classical three species cyclic competition model with spatial diffusion, which have been so far missed in the literature. These new patterns are characterized by a high regularity in space, but are different from patterns previously known to exist in reaction–diffusion models, and may have important applications in improving our understanding of biological pattern formation and invasion theory. Finding these new patterns is made technically possible by using an automatic adaptive finite element method driven by a novel a posteriori error estimate which is proved to provide a reliable bound for the error of the numerical method. We demonstrate how this numerical framework allows us to easily explore the dynamical patterns in both two and three spatial dimensions.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2017.0608</identifier><identifier>PMID: 29887744</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Adaptivity ; Biodiversity ; Biological models (mathematics) ; Competition ; Dependence ; Error Estimates ; Finite element method ; Finite Element Methods ; Lotka–volterra Spatial Model ; Numerical methods ; Pattern Formation ; Species diffusion ; Traveling waves ; Wave propagation</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2018-05, Vol.474 (2213), p.20170608-20170608</ispartof><rights>2018 The Author(s)</rights><rights>Copyright The Royal Society Publishing May 2018</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-7bec1d680601f3f5caebba6b9786a8114bf32286f69407bb264e3f36140361013</citedby><cites>FETCH-LOGICAL-c562t-7bec1d680601f3f5caebba6b9786a8114bf32286f69407bb264e3f36140361013</cites><orcidid>0000-0002-6935-3563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29887744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cangiani, A.</creatorcontrib><creatorcontrib>Georgoulis, E. H.</creatorcontrib><creatorcontrib>Morozov, A. Yu</creatorcontrib><creatorcontrib>Sutton, O. J.</creatorcontrib><title>Revealing new dynamical patterns in a reaction–diffusion model with cyclic competition via a novel computational framework</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>Understanding how patterns and travelling waves form in chemical and biological reaction–diffusion models is an area which has been widely researched, yet is still experiencing fast development. Surprisingly enough, we still do not have a clear understanding about all possible types of dynamical regimes in classical reaction–diffusion models, such as Lotka–Volterra competition models with spatial dependence. In this study, we demonstrate some new types of wave propagation and pattern formation in a classical three species cyclic competition model with spatial diffusion, which have been so far missed in the literature. These new patterns are characterized by a high regularity in space, but are different from patterns previously known to exist in reaction–diffusion models, and may have important applications in improving our understanding of biological pattern formation and invasion theory. Finding these new patterns is made technically possible by using an automatic adaptive finite element method driven by a novel a posteriori error estimate which is proved to provide a reliable bound for the error of the numerical method. We demonstrate how this numerical framework allows us to easily explore the dynamical patterns in both two and three spatial dimensions.</description><subject>Adaptivity</subject><subject>Biodiversity</subject><subject>Biological models (mathematics)</subject><subject>Competition</subject><subject>Dependence</subject><subject>Error Estimates</subject><subject>Finite element method</subject><subject>Finite Element Methods</subject><subject>Lotka–volterra Spatial Model</subject><subject>Numerical methods</subject><subject>Pattern Formation</subject><subject>Species diffusion</subject><subject>Traveling waves</subject><subject>Wave propagation</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1yAYxxujcXN69WhIvHjpT_4V6MVkWXSaLNFMPRNK6cbWQgXaX2p28D34Dn0lUn9zuiV6AQKf5_Pw5FsUTxHcIFiLlyGOaoMh4hvIoLhX7CPKUYlryu7nM2G0rCBGe8WjGC8ghHUl-MNiD9dCcE7pfnF1amajeuvOgDNb0C5ODVarHowqJRNcBNYBBYJROlnvfnz73tqum2I-g8G3pgdbm86BXnRvNdB-GE2yKwlmq3Kh83Nm1vspqfU-q7ugBrP14fJx8aBTfTRPrveD4vOb15-O3pYn74_fHR2elLpiOJW8MRq1TOQJUUe6SivTNIo1NRdMCYRo0xGMBetYTSFvGsyoIR1hiMK8QEQOilc77zg1g2m1cSmoXo7BDios0isrb784ey7P_CyruoasFlnw4loQ_JfJxCQHG7Xpe-WMn6LEsCKYM8FJRp_fQS_8FPLYK0UZFQziVbjZUTr4GIPpbj6DoFyDlWuwcg1WrsHmgmd_j3CD_04yA2QHBL_kZl5bk5Y_vf-pvfxf1enHD4cz5dRijIjMPIKcEkrkVzvuVPlR2hgnI38ht_V3u_0EKM3XPg</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Cangiani, A.</creator><creator>Georgoulis, E. H.</creator><creator>Morozov, A. Yu</creator><creator>Sutton, O. J.</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6935-3563</orcidid></search><sort><creationdate>20180501</creationdate><title>Revealing new dynamical patterns in a reaction–diffusion model with cyclic competition via a novel computational framework</title><author>Cangiani, A. ; Georgoulis, E. H. ; Morozov, A. Yu ; Sutton, O. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-7bec1d680601f3f5caebba6b9786a8114bf32286f69407bb264e3f36140361013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptivity</topic><topic>Biodiversity</topic><topic>Biological models (mathematics)</topic><topic>Competition</topic><topic>Dependence</topic><topic>Error Estimates</topic><topic>Finite element method</topic><topic>Finite Element Methods</topic><topic>Lotka–volterra Spatial Model</topic><topic>Numerical methods</topic><topic>Pattern Formation</topic><topic>Species diffusion</topic><topic>Traveling waves</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cangiani, A.</creatorcontrib><creatorcontrib>Georgoulis, E. H.</creatorcontrib><creatorcontrib>Morozov, A. Yu</creatorcontrib><creatorcontrib>Sutton, O. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cangiani, A.</au><au>Georgoulis, E. H.</au><au>Morozov, A. Yu</au><au>Sutton, O. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing new dynamical patterns in a reaction–diffusion model with cyclic competition via a novel computational framework</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>474</volume><issue>2213</issue><spage>20170608</spage><epage>20170608</epage><pages>20170608-20170608</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Understanding how patterns and travelling waves form in chemical and biological reaction–diffusion models is an area which has been widely researched, yet is still experiencing fast development. Surprisingly enough, we still do not have a clear understanding about all possible types of dynamical regimes in classical reaction–diffusion models, such as Lotka–Volterra competition models with spatial dependence. In this study, we demonstrate some new types of wave propagation and pattern formation in a classical three species cyclic competition model with spatial diffusion, which have been so far missed in the literature. These new patterns are characterized by a high regularity in space, but are different from patterns previously known to exist in reaction–diffusion models, and may have important applications in improving our understanding of biological pattern formation and invasion theory. Finding these new patterns is made technically possible by using an automatic adaptive finite element method driven by a novel a posteriori error estimate which is proved to provide a reliable bound for the error of the numerical method. We demonstrate how this numerical framework allows us to easily explore the dynamical patterns in both two and three spatial dimensions.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>29887744</pmid><doi>10.1098/rspa.2017.0608</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0002-6935-3563</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2018-05, Vol.474 (2213), p.20170608-20170608 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rspa_2017_0608 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection |
subjects | Adaptivity Biodiversity Biological models (mathematics) Competition Dependence Error Estimates Finite element method Finite Element Methods Lotka–volterra Spatial Model Numerical methods Pattern Formation Species diffusion Traveling waves Wave propagation |
title | Revealing new dynamical patterns in a reaction–diffusion model with cyclic competition via a novel computational framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20new%20dynamical%20patterns%20in%20a%20reaction%E2%80%93diffusion%20model%20with%20cyclic%20competition%20via%20a%20novel%20computational%20framework&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Cangiani,%20A.&rft.date=2018-05-01&rft.volume=474&rft.issue=2213&rft.spage=20170608&rft.epage=20170608&rft.pages=20170608-20170608&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2017.0608&rft_dat=%3Cproquest_cross%3E2053276873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046486028&rft_id=info:pmid/29887744&rfr_iscdi=true |