Graph theory and the Jahn-Teller theorem

The Jahn-Teller (JT) theorem predicts spontaneous symmetry breaking and lifting of degeneracy in degenerate electronic states of (nonlinear) molecular and solid-state systems. In these cases, degeneracy is lifted by geometric distortion. Molecular problems are often modelled using spectral theory fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2012-04, Vol.468 (2140), p.971-989
Hauptverfasser: Ceulemans, A., Lijnen, E., Fowler, P. W., Mallion, R. B., Pisanski, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 2140
container_start_page 971
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 468
creator Ceulemans, A.
Lijnen, E.
Fowler, P. W.
Mallion, R. B.
Pisanski, T.
description The Jahn-Teller (JT) theorem predicts spontaneous symmetry breaking and lifting of degeneracy in degenerate electronic states of (nonlinear) molecular and solid-state systems. In these cases, degeneracy is lifted by geometric distortion. Molecular problems are often modelled using spectral theory for weighted graphs, and the present paper turns this process around and reformulates the JT theorem for general vertex- and edge-weighted graphs themselves. If the eigenvectors and eigenvalues of a general graph are considered as orbitals and energy levels (respectively) to be occupied by electrons, then degeneracy of states can be resolved by a non-totally symmetric re-weighting of edges and, where necessary, vertices. This leads to the conjecture that whenever the spectrum of a graph contains a set of bonding or anti-bonding degenerate eigenvalues, the roots of the Hamiltonian matrix over this set will show a linear dependence on edge distortions, which has the effect of lifting the degeneracy. When the degenerate level is non-bonding, distortions of vertex weights have to be included to obtain a full resolution of the eigenspace of the degeneracy. Explicit treatments are given for examples of the octahedral graph, where the degeneracy to be lifted is forced by symmetry, and the phenalenyl graph, where the degeneracy is accidental in terms of the automorphism group.
doi_str_mv 10.1098/rspa.2011.0508
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_2011_0508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41511046</jstor_id><sourcerecordid>41511046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-1aba18fdfbfdafbdb07a184ef573a5ac2cfb88112773b1b9ce7e7be0d5cca6083</originalsourceid><addsrcrecordid>eNp9j81Lw0AQxYMoWKtXb0KPXhJnsrvZzbFUrUpB0doel02yS9OvhN1UjH-9iZGCiJ5mht-8N_M87xwhQIjFlXWlCkJADICBOPB6SDn6YUyjw6YnEfUZhHjsnTi3BICYCd7zLsdWlYtBtdCFrQdqm7Xt4EEttv5Ur9fadkhvTr0jo9ZOn33Xvvd6ezMd3fmTx_H9aDjxU0bjykeVKBQmM4nJlEmyBHgzU20YJ4qpNExNIgRiyDlJMIlTzTVPNGQsTVUEgvS9oPNNbeGc1UaWNt8oW0sE2eaUbU7Z5pRtzkZAOoEt6uaxIs11VctlsbPbZvxbtfpP9fzyNHyjkchDpCCbfQROYxLKj7zsrBooc-d2Wn6t_LT_fe2iu7Z0VWH3iSgyRKBRw_2O567S73uu7EpGnHAmZ4LKOZvBdH49kRH5BLymk8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Graph theory and the Jahn-Teller theorem</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Ceulemans, A. ; Lijnen, E. ; Fowler, P. W. ; Mallion, R. B. ; Pisanski, T.</creator><creatorcontrib>Ceulemans, A. ; Lijnen, E. ; Fowler, P. W. ; Mallion, R. B. ; Pisanski, T.</creatorcontrib><description>The Jahn-Teller (JT) theorem predicts spontaneous symmetry breaking and lifting of degeneracy in degenerate electronic states of (nonlinear) molecular and solid-state systems. In these cases, degeneracy is lifted by geometric distortion. Molecular problems are often modelled using spectral theory for weighted graphs, and the present paper turns this process around and reformulates the JT theorem for general vertex- and edge-weighted graphs themselves. If the eigenvectors and eigenvalues of a general graph are considered as orbitals and energy levels (respectively) to be occupied by electrons, then degeneracy of states can be resolved by a non-totally symmetric re-weighting of edges and, where necessary, vertices. This leads to the conjecture that whenever the spectrum of a graph contains a set of bonding or anti-bonding degenerate eigenvalues, the roots of the Hamiltonian matrix over this set will show a linear dependence on edge distortions, which has the effect of lifting the degeneracy. When the degenerate level is non-bonding, distortions of vertex weights have to be included to obtain a full resolution of the eigenspace of the degeneracy. Explicit treatments are given for examples of the octahedral graph, where the degeneracy to be lifted is forced by symmetry, and the phenalenyl graph, where the degeneracy is accidental in terms of the automorphism group.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2011.0508</identifier><language>eng</language><publisher>The Royal Society Publishing</publisher><subject>Automorphisms ; Chemical bonding ; Eigenvalues ; Eigenvectors ; Electronic/spectral Degeneracy ; Electrons ; Group Theory ; Hückel Theory ; Jahn Teller effect ; Molecules ; Spectral Graph Theory ; Symmetry ; Vertices</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-04, Vol.468 (2140), p.971-989</ispartof><rights>COPYRIGHT © 2012 The Royal Society</rights><rights>This journal is © 2011 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-1aba18fdfbfdafbdb07a184ef573a5ac2cfb88112773b1b9ce7e7be0d5cca6083</citedby><cites>FETCH-LOGICAL-c549t-1aba18fdfbfdafbdb07a184ef573a5ac2cfb88112773b1b9ce7e7be0d5cca6083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41511046$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41511046$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Ceulemans, A.</creatorcontrib><creatorcontrib>Lijnen, E.</creatorcontrib><creatorcontrib>Fowler, P. W.</creatorcontrib><creatorcontrib>Mallion, R. B.</creatorcontrib><creatorcontrib>Pisanski, T.</creatorcontrib><title>Graph theory and the Jahn-Teller theorem</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>The Jahn-Teller (JT) theorem predicts spontaneous symmetry breaking and lifting of degeneracy in degenerate electronic states of (nonlinear) molecular and solid-state systems. In these cases, degeneracy is lifted by geometric distortion. Molecular problems are often modelled using spectral theory for weighted graphs, and the present paper turns this process around and reformulates the JT theorem for general vertex- and edge-weighted graphs themselves. If the eigenvectors and eigenvalues of a general graph are considered as orbitals and energy levels (respectively) to be occupied by electrons, then degeneracy of states can be resolved by a non-totally symmetric re-weighting of edges and, where necessary, vertices. This leads to the conjecture that whenever the spectrum of a graph contains a set of bonding or anti-bonding degenerate eigenvalues, the roots of the Hamiltonian matrix over this set will show a linear dependence on edge distortions, which has the effect of lifting the degeneracy. When the degenerate level is non-bonding, distortions of vertex weights have to be included to obtain a full resolution of the eigenspace of the degeneracy. Explicit treatments are given for examples of the octahedral graph, where the degeneracy to be lifted is forced by symmetry, and the phenalenyl graph, where the degeneracy is accidental in terms of the automorphism group.</description><subject>Automorphisms</subject><subject>Chemical bonding</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Electronic/spectral Degeneracy</subject><subject>Electrons</subject><subject>Group Theory</subject><subject>Hückel Theory</subject><subject>Jahn Teller effect</subject><subject>Molecules</subject><subject>Spectral Graph Theory</subject><subject>Symmetry</subject><subject>Vertices</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9j81Lw0AQxYMoWKtXb0KPXhJnsrvZzbFUrUpB0doel02yS9OvhN1UjH-9iZGCiJ5mht-8N_M87xwhQIjFlXWlCkJADICBOPB6SDn6YUyjw6YnEfUZhHjsnTi3BICYCd7zLsdWlYtBtdCFrQdqm7Xt4EEttv5Ur9fadkhvTr0jo9ZOn33Xvvd6ezMd3fmTx_H9aDjxU0bjykeVKBQmM4nJlEmyBHgzU20YJ4qpNExNIgRiyDlJMIlTzTVPNGQsTVUEgvS9oPNNbeGc1UaWNt8oW0sE2eaUbU7Z5pRtzkZAOoEt6uaxIs11VctlsbPbZvxbtfpP9fzyNHyjkchDpCCbfQROYxLKj7zsrBooc-d2Wn6t_LT_fe2iu7Z0VWH3iSgyRKBRw_2O567S73uu7EpGnHAmZ4LKOZvBdH49kRH5BLymk8A</recordid><startdate>20120408</startdate><enddate>20120408</enddate><creator>Ceulemans, A.</creator><creator>Lijnen, E.</creator><creator>Fowler, P. W.</creator><creator>Mallion, R. B.</creator><creator>Pisanski, T.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120408</creationdate><title>Graph theory and the Jahn-Teller theorem</title><author>Ceulemans, A. ; Lijnen, E. ; Fowler, P. W. ; Mallion, R. B. ; Pisanski, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-1aba18fdfbfdafbdb07a184ef573a5ac2cfb88112773b1b9ce7e7be0d5cca6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Automorphisms</topic><topic>Chemical bonding</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Electronic/spectral Degeneracy</topic><topic>Electrons</topic><topic>Group Theory</topic><topic>Hückel Theory</topic><topic>Jahn Teller effect</topic><topic>Molecules</topic><topic>Spectral Graph Theory</topic><topic>Symmetry</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ceulemans, A.</creatorcontrib><creatorcontrib>Lijnen, E.</creatorcontrib><creatorcontrib>Fowler, P. W.</creatorcontrib><creatorcontrib>Mallion, R. B.</creatorcontrib><creatorcontrib>Pisanski, T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceulemans, A.</au><au>Lijnen, E.</au><au>Fowler, P. W.</au><au>Mallion, R. B.</au><au>Pisanski, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph theory and the Jahn-Teller theorem</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2012-04-08</date><risdate>2012</risdate><volume>468</volume><issue>2140</issue><spage>971</spage><epage>989</epage><pages>971-989</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>The Jahn-Teller (JT) theorem predicts spontaneous symmetry breaking and lifting of degeneracy in degenerate electronic states of (nonlinear) molecular and solid-state systems. In these cases, degeneracy is lifted by geometric distortion. Molecular problems are often modelled using spectral theory for weighted graphs, and the present paper turns this process around and reformulates the JT theorem for general vertex- and edge-weighted graphs themselves. If the eigenvectors and eigenvalues of a general graph are considered as orbitals and energy levels (respectively) to be occupied by electrons, then degeneracy of states can be resolved by a non-totally symmetric re-weighting of edges and, where necessary, vertices. This leads to the conjecture that whenever the spectrum of a graph contains a set of bonding or anti-bonding degenerate eigenvalues, the roots of the Hamiltonian matrix over this set will show a linear dependence on edge distortions, which has the effect of lifting the degeneracy. When the degenerate level is non-bonding, distortions of vertex weights have to be included to obtain a full resolution of the eigenspace of the degeneracy. Explicit treatments are given for examples of the octahedral graph, where the degeneracy to be lifted is forced by symmetry, and the phenalenyl graph, where the degeneracy is accidental in terms of the automorphism group.</abstract><pub>The Royal Society Publishing</pub><doi>10.1098/rspa.2011.0508</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-04, Vol.468 (2140), p.971-989
issn 1364-5021
1471-2946
language eng
recordid cdi_crossref_primary_10_1098_rspa_2011_0508
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection
subjects Automorphisms
Chemical bonding
Eigenvalues
Eigenvectors
Electronic/spectral Degeneracy
Electrons
Group Theory
Hückel Theory
Jahn Teller effect
Molecules
Spectral Graph Theory
Symmetry
Vertices
title Graph theory and the Jahn-Teller theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20theory%20and%20the%20Jahn-Teller%20theorem&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Ceulemans,%20A.&rft.date=2012-04-08&rft.volume=468&rft.issue=2140&rft.spage=971&rft.epage=989&rft.pages=971-989&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2011.0508&rft_dat=%3Cjstor_cross%3E41511046%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41511046&rfr_iscdi=true