Theory of trapping forces in optical tweezers

Starting from a Debye-type integral representation valid for a laser beam focused through a high numerical aperture objective, we derive an explicit partial-wave (Mie) representation for the force exerted on a dielectric sphere of arbitrary radius, position and refractive index. In the semi-classica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2003-12, Vol.459 (2040), p.3021-3041
Hauptverfasser: Mazolli, A., Maia Neto, P. A., Nussenzveig, H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3041
container_issue 2040
container_start_page 3021
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 459
creator Mazolli, A.
Maia Neto, P. A.
Nussenzveig, H. M.
description Starting from a Debye-type integral representation valid for a laser beam focused through a high numerical aperture objective, we derive an explicit partial-wave (Mie) representation for the force exerted on a dielectric sphere of arbitrary radius, position and refractive index. In the semi-classical limit, the ray-optics result is shown to follow from the Mie expansion, holding in the sense of a size average. The equilibrium position and trap stiffness oscillate as functions of the circumference-to-wavelength ratio, a signature of interference, not predicted by previous theories. We also present comparisons with experimental results.
doi_str_mv 10.1098/rspa.2003.1164
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_2003_1164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3560072</jstor_id><sourcerecordid>3560072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-2c724b343fe3553241a7aed5b98fe00d89b08c317b884ba18756ff624ba992303</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRUKtXTx72D2ydfG2yN6VoFQpCrR-3kN0m7da6WZKUWn-9WVaEHvQ0Gd55Zt6XJMkFgiGCQlw536ohBiBDhHJ6kJwgylGGC5ofxjfJacYAo-Pk1PsVABRM8JMkmy21dbvUmjQ41bZ1s0iNdZX2ad2ktg11pdZp2Gr9pZ0_S46MWnt9_lMHyfPd7Wx0n00exw-jm0lWUQohwxXHtCSUGE0YI5gixZWes7IQRgPMRVGCqAjipRC0VEhwlhuTR0YVBSZABsmw31s5673TRrau_lBuJxHILqzswsourOzCRoD0gLO7aMxWtQ47ubIb18T2b-qyp1Y-WPd7g7AcgOMoZ71c-6A_f2Xl3mXOCWfyRVA5nj69jV_JVLI4j_v5Zb1Ybmun5Z6b2LTOK0lZET1QkCR-R4Su_4U6x5Vtgm7CPinNZr2W7dyQb5vkmhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory of trapping forces in optical tweezers</title><source>JSTOR Mathematics and Statistics</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Mazolli, A. ; Maia Neto, P. A. ; Nussenzveig, H. M.</creator><creatorcontrib>Mazolli, A. ; Maia Neto, P. A. ; Nussenzveig, H. M.</creatorcontrib><description>Starting from a Debye-type integral representation valid for a laser beam focused through a high numerical aperture objective, we derive an explicit partial-wave (Mie) representation for the force exerted on a dielectric sphere of arbitrary radius, position and refractive index. In the semi-classical limit, the ray-optics result is shown to follow from the Mie expansion, holding in the sense of a size average. The equilibrium position and trap stiffness oscillate as functions of the circumference-to-wavelength ratio, a signature of interference, not predicted by previous theories. We also present comparisons with experimental results.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2003.1164</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Approximation ; Coefficients ; Electric fields ; Laser beams ; Magnetic fields ; Mie Scattering ; Multipoles ; Optical Traps ; Semiclassical Limit ; Sine function ; Stiffness ; Tweezers ; Wavelengths</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2003-12, Vol.459 (2040), p.3021-3041</ispartof><rights>Copyright 2003 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-2c724b343fe3553241a7aed5b98fe00d89b08c317b884ba18756ff624ba992303</citedby><cites>FETCH-LOGICAL-c440t-2c724b343fe3553241a7aed5b98fe00d89b08c317b884ba18756ff624ba992303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3560072$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3560072$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Mazolli, A.</creatorcontrib><creatorcontrib>Maia Neto, P. A.</creatorcontrib><creatorcontrib>Nussenzveig, H. M.</creatorcontrib><title>Theory of trapping forces in optical tweezers</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>Starting from a Debye-type integral representation valid for a laser beam focused through a high numerical aperture objective, we derive an explicit partial-wave (Mie) representation for the force exerted on a dielectric sphere of arbitrary radius, position and refractive index. In the semi-classical limit, the ray-optics result is shown to follow from the Mie expansion, holding in the sense of a size average. The equilibrium position and trap stiffness oscillate as functions of the circumference-to-wavelength ratio, a signature of interference, not predicted by previous theories. We also present comparisons with experimental results.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Electric fields</subject><subject>Laser beams</subject><subject>Magnetic fields</subject><subject>Mie Scattering</subject><subject>Multipoles</subject><subject>Optical Traps</subject><subject>Semiclassical Limit</subject><subject>Sine function</subject><subject>Stiffness</subject><subject>Tweezers</subject><subject>Wavelengths</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRUKtXTx72D2ydfG2yN6VoFQpCrR-3kN0m7da6WZKUWn-9WVaEHvQ0Gd55Zt6XJMkFgiGCQlw536ohBiBDhHJ6kJwgylGGC5ofxjfJacYAo-Pk1PsVABRM8JMkmy21dbvUmjQ41bZ1s0iNdZX2ad2ktg11pdZp2Gr9pZ0_S46MWnt9_lMHyfPd7Wx0n00exw-jm0lWUQohwxXHtCSUGE0YI5gixZWes7IQRgPMRVGCqAjipRC0VEhwlhuTR0YVBSZABsmw31s5673TRrau_lBuJxHILqzswsourOzCRoD0gLO7aMxWtQ47ubIb18T2b-qyp1Y-WPd7g7AcgOMoZ71c-6A_f2Xl3mXOCWfyRVA5nj69jV_JVLI4j_v5Zb1Ybmun5Z6b2LTOK0lZET1QkCR-R4Su_4U6x5Vtgm7CPinNZr2W7dyQb5vkmhQ</recordid><startdate>20031208</startdate><enddate>20031208</enddate><creator>Mazolli, A.</creator><creator>Maia Neto, P. A.</creator><creator>Nussenzveig, H. M.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031208</creationdate><title>Theory of trapping forces in optical tweezers</title><author>Mazolli, A. ; Maia Neto, P. A. ; Nussenzveig, H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-2c724b343fe3553241a7aed5b98fe00d89b08c317b884ba18756ff624ba992303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Electric fields</topic><topic>Laser beams</topic><topic>Magnetic fields</topic><topic>Mie Scattering</topic><topic>Multipoles</topic><topic>Optical Traps</topic><topic>Semiclassical Limit</topic><topic>Sine function</topic><topic>Stiffness</topic><topic>Tweezers</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazolli, A.</creatorcontrib><creatorcontrib>Maia Neto, P. A.</creatorcontrib><creatorcontrib>Nussenzveig, H. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazolli, A.</au><au>Maia Neto, P. A.</au><au>Nussenzveig, H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of trapping forces in optical tweezers</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2003-12-08</date><risdate>2003</risdate><volume>459</volume><issue>2040</issue><spage>3021</spage><epage>3041</epage><pages>3021-3041</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Starting from a Debye-type integral representation valid for a laser beam focused through a high numerical aperture objective, we derive an explicit partial-wave (Mie) representation for the force exerted on a dielectric sphere of arbitrary radius, position and refractive index. In the semi-classical limit, the ray-optics result is shown to follow from the Mie expansion, holding in the sense of a size average. The equilibrium position and trap stiffness oscillate as functions of the circumference-to-wavelength ratio, a signature of interference, not predicted by previous theories. We also present comparisons with experimental results.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2003.1164</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2003-12, Vol.459 (2040), p.3021-3041
issn 1364-5021
1471-2946
language eng
recordid cdi_crossref_primary_10_1098_rspa_2003_1164
source JSTOR Mathematics and Statistics; Alma/SFX Local Collection; JSTOR
subjects Approximation
Coefficients
Electric fields
Laser beams
Magnetic fields
Mie Scattering
Multipoles
Optical Traps
Semiclassical Limit
Sine function
Stiffness
Tweezers
Wavelengths
title Theory of trapping forces in optical tweezers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20trapping%20forces%20in%20optical%20tweezers&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Mazolli,%20A.&rft.date=2003-12-08&rft.volume=459&rft.issue=2040&rft.spage=3021&rft.epage=3041&rft.pages=3021-3041&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2003.1164&rft_dat=%3Cjstor_cross%3E3560072%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3560072&rfr_iscdi=true