Theory of trapping forces in optical tweezers
Starting from a Debye-type integral representation valid for a laser beam focused through a high numerical aperture objective, we derive an explicit partial-wave (Mie) representation for the force exerted on a dielectric sphere of arbitrary radius, position and refractive index. In the semi-classica...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2003-12, Vol.459 (2040), p.3021-3041 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3041 |
---|---|
container_issue | 2040 |
container_start_page | 3021 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 459 |
creator | Mazolli, A. Maia Neto, P. A. Nussenzveig, H. M. |
description | Starting from a Debye-type integral representation valid for a laser beam focused through a high numerical aperture objective, we derive an explicit partial-wave (Mie) representation for the force exerted on a dielectric sphere of arbitrary radius, position and refractive index. In the semi-classical limit, the ray-optics result is shown to follow from the Mie expansion, holding in the sense of a size average. The equilibrium position and trap stiffness oscillate as functions of the circumference-to-wavelength ratio, a signature of interference, not predicted by previous theories. We also present comparisons with experimental results. |
doi_str_mv | 10.1098/rspa.2003.1164 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_2003_1164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3560072</jstor_id><sourcerecordid>3560072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-2c724b343fe3553241a7aed5b98fe00d89b08c317b884ba18756ff624ba992303</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRUKtXTx72D2ydfG2yN6VoFQpCrR-3kN0m7da6WZKUWn-9WVaEHvQ0Gd55Zt6XJMkFgiGCQlw536ohBiBDhHJ6kJwgylGGC5ofxjfJacYAo-Pk1PsVABRM8JMkmy21dbvUmjQ41bZ1s0iNdZX2ad2ktg11pdZp2Gr9pZ0_S46MWnt9_lMHyfPd7Wx0n00exw-jm0lWUQohwxXHtCSUGE0YI5gixZWes7IQRgPMRVGCqAjipRC0VEhwlhuTR0YVBSZABsmw31s5673TRrau_lBuJxHILqzswsourOzCRoD0gLO7aMxWtQ47ubIb18T2b-qyp1Y-WPd7g7AcgOMoZ71c-6A_f2Xl3mXOCWfyRVA5nj69jV_JVLI4j_v5Zb1Ybmun5Z6b2LTOK0lZET1QkCR-R4Su_4U6x5Vtgm7CPinNZr2W7dyQb5vkmhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory of trapping forces in optical tweezers</title><source>JSTOR Mathematics and Statistics</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Mazolli, A. ; Maia Neto, P. A. ; Nussenzveig, H. M.</creator><creatorcontrib>Mazolli, A. ; Maia Neto, P. A. ; Nussenzveig, H. M.</creatorcontrib><description>Starting from a Debye-type integral representation valid for a laser beam focused through a high numerical aperture objective, we derive an explicit partial-wave (Mie) representation for the force exerted on a dielectric sphere of arbitrary radius, position and refractive index. In the semi-classical limit, the ray-optics result is shown to follow from the Mie expansion, holding in the sense of a size average. The equilibrium position and trap stiffness oscillate as functions of the circumference-to-wavelength ratio, a signature of interference, not predicted by previous theories. We also present comparisons with experimental results.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2003.1164</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Approximation ; Coefficients ; Electric fields ; Laser beams ; Magnetic fields ; Mie Scattering ; Multipoles ; Optical Traps ; Semiclassical Limit ; Sine function ; Stiffness ; Tweezers ; Wavelengths</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2003-12, Vol.459 (2040), p.3021-3041</ispartof><rights>Copyright 2003 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-2c724b343fe3553241a7aed5b98fe00d89b08c317b884ba18756ff624ba992303</citedby><cites>FETCH-LOGICAL-c440t-2c724b343fe3553241a7aed5b98fe00d89b08c317b884ba18756ff624ba992303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3560072$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3560072$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Mazolli, A.</creatorcontrib><creatorcontrib>Maia Neto, P. A.</creatorcontrib><creatorcontrib>Nussenzveig, H. M.</creatorcontrib><title>Theory of trapping forces in optical tweezers</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>Starting from a Debye-type integral representation valid for a laser beam focused through a high numerical aperture objective, we derive an explicit partial-wave (Mie) representation for the force exerted on a dielectric sphere of arbitrary radius, position and refractive index. In the semi-classical limit, the ray-optics result is shown to follow from the Mie expansion, holding in the sense of a size average. The equilibrium position and trap stiffness oscillate as functions of the circumference-to-wavelength ratio, a signature of interference, not predicted by previous theories. We also present comparisons with experimental results.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Electric fields</subject><subject>Laser beams</subject><subject>Magnetic fields</subject><subject>Mie Scattering</subject><subject>Multipoles</subject><subject>Optical Traps</subject><subject>Semiclassical Limit</subject><subject>Sine function</subject><subject>Stiffness</subject><subject>Tweezers</subject><subject>Wavelengths</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRUKtXTx72D2ydfG2yN6VoFQpCrR-3kN0m7da6WZKUWn-9WVaEHvQ0Gd55Zt6XJMkFgiGCQlw536ohBiBDhHJ6kJwgylGGC5ofxjfJacYAo-Pk1PsVABRM8JMkmy21dbvUmjQ41bZ1s0iNdZX2ad2ktg11pdZp2Gr9pZ0_S46MWnt9_lMHyfPd7Wx0n00exw-jm0lWUQohwxXHtCSUGE0YI5gixZWes7IQRgPMRVGCqAjipRC0VEhwlhuTR0YVBSZABsmw31s5673TRrau_lBuJxHILqzswsourOzCRoD0gLO7aMxWtQ47ubIb18T2b-qyp1Y-WPd7g7AcgOMoZ71c-6A_f2Xl3mXOCWfyRVA5nj69jV_JVLI4j_v5Zb1Ybmun5Z6b2LTOK0lZET1QkCR-R4Su_4U6x5Vtgm7CPinNZr2W7dyQb5vkmhQ</recordid><startdate>20031208</startdate><enddate>20031208</enddate><creator>Mazolli, A.</creator><creator>Maia Neto, P. A.</creator><creator>Nussenzveig, H. M.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031208</creationdate><title>Theory of trapping forces in optical tweezers</title><author>Mazolli, A. ; Maia Neto, P. A. ; Nussenzveig, H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-2c724b343fe3553241a7aed5b98fe00d89b08c317b884ba18756ff624ba992303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Electric fields</topic><topic>Laser beams</topic><topic>Magnetic fields</topic><topic>Mie Scattering</topic><topic>Multipoles</topic><topic>Optical Traps</topic><topic>Semiclassical Limit</topic><topic>Sine function</topic><topic>Stiffness</topic><topic>Tweezers</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazolli, A.</creatorcontrib><creatorcontrib>Maia Neto, P. A.</creatorcontrib><creatorcontrib>Nussenzveig, H. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazolli, A.</au><au>Maia Neto, P. A.</au><au>Nussenzveig, H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of trapping forces in optical tweezers</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2003-12-08</date><risdate>2003</risdate><volume>459</volume><issue>2040</issue><spage>3021</spage><epage>3041</epage><pages>3021-3041</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Starting from a Debye-type integral representation valid for a laser beam focused through a high numerical aperture objective, we derive an explicit partial-wave (Mie) representation for the force exerted on a dielectric sphere of arbitrary radius, position and refractive index. In the semi-classical limit, the ray-optics result is shown to follow from the Mie expansion, holding in the sense of a size average. The equilibrium position and trap stiffness oscillate as functions of the circumference-to-wavelength ratio, a signature of interference, not predicted by previous theories. We also present comparisons with experimental results.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2003.1164</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2003-12, Vol.459 (2040), p.3021-3041 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rspa_2003_1164 |
source | JSTOR Mathematics and Statistics; Alma/SFX Local Collection; JSTOR |
subjects | Approximation Coefficients Electric fields Laser beams Magnetic fields Mie Scattering Multipoles Optical Traps Semiclassical Limit Sine function Stiffness Tweezers Wavelengths |
title | Theory of trapping forces in optical tweezers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20trapping%20forces%20in%20optical%20tweezers&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Mazolli,%20A.&rft.date=2003-12-08&rft.volume=459&rft.issue=2040&rft.spage=3021&rft.epage=3041&rft.pages=3021-3041&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2003.1164&rft_dat=%3Cjstor_cross%3E3560072%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3560072&rfr_iscdi=true |