The transport properties of layers of elliptical cylinders

The Rayleigh method has been used in previous work to determine the effective transport properties of a rectangular array of elliptical cylinders for all cases where the ellipses are non-intersecting. However, the calculation of the elliptic lattice sums that naturally arose was numerically ineffici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2001-02, Vol.457 (2006), p.395-423
Hauptverfasser: Yardley, J.G, Reuben, A.J, McPhedran, R.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 2006
container_start_page 395
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 457
creator Yardley, J.G
Reuben, A.J
McPhedran, R.C
description The Rayleigh method has been used in previous work to determine the effective transport properties of a rectangular array of elliptical cylinders for all cases where the ellipses are non-intersecting. However, the calculation of the elliptic lattice sums that naturally arose was numerically inefficient and analytically cumbersome. In this present work we use integral transforms to obtain rapidly convergent series for one-dimensional elliptical lattice sums and use these lattice sums to determine the transport properties of composites constructed from multiple layers of elliptical cylinders. We study the convergence of effective transport properties as a function of the number of layers and show that this convergence is extremely rapid. Further, we use the integral transform representation to exhibit the simplest form of the interior addition formula for harmonic functions in elliptical coordinates.
doi_str_mv 10.1098/rspa.2000.0672
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_2000_0672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3067207</jstor_id><sourcerecordid>3067207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-538781e1ccf015b52c249ab3962115d0fffc033b9b360eeb0ada9908e885476c3</originalsourceid><addsrcrecordid>eNp9j0tPxCAUhRujic-tKxf9Ax2hvIobYya-osbN-NgRyoDDWEsDTLT_XmrNJLPQFfdyzgfnZNkxBBMIeHXqQycnJQBgAigrt7I9iBksSo7pdpoRxQUBJdzN9kNYJhcnFdvLzmYLnUcv29A5H_POu077aHXInckb2Wv_M-mmsV20Sja56hvbztP9YbZjZBP00e95kD1dXc6mN8X94_Xt9OK-UBiDWBBUsQpqqJQBkNSkVCXmskaclhCSOTDGKIBQzWtEgdY1kHPJOah0VRHMqEIH2WR8V3kXgtdGdN5-SN8LCMTQXAzNxdBcDM0TgEbAuz4Fc8rq2IulW_k2rX9TJyO1DNH59R9oEAFLcjHKNkT9tZalfxeUIUbEc4XFC3y9m9EXLB6SH47-hX1bfFqvxUaatHQ-SIEJGzJQgThJzPm_zBBYuTbqNm6AwqyaRnRzg74BynGfUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The transport properties of layers of elliptical cylinders</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Yardley, J.G ; Reuben, A.J ; McPhedran, R.C</creator><creatorcontrib>Yardley, J.G ; Reuben, A.J ; McPhedran, R.C</creatorcontrib><description>The Rayleigh method has been used in previous work to determine the effective transport properties of a rectangular array of elliptical cylinders for all cases where the ellipses are non-intersecting. However, the calculation of the elliptic lattice sums that naturally arose was numerically inefficient and analytically cumbersome. In this present work we use integral transforms to obtain rapidly convergent series for one-dimensional elliptical lattice sums and use these lattice sums to determine the transport properties of composites constructed from multiple layers of elliptical cylinders. We study the convergence of effective transport properties as a function of the number of layers and show that this convergence is extremely rapid. Further, we use the integral transform representation to exhibit the simplest form of the interior addition formula for harmonic functions in elliptical coordinates.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2000.0672</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Coefficients ; Conductivity ; Cylinders ; Electric fields ; Ellipse ; Ellipses ; Elliptical cylinders ; Geometric lines ; Grating ; Laplace Transform ; Multipoles ; Rayleigh Method ; Research Article ; Series convergence ; Stack ; Transport phenomena</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2001-02, Vol.457 (2006), p.395-423</ispartof><rights>Copyright 2001 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-538781e1ccf015b52c249ab3962115d0fffc033b9b360eeb0ada9908e885476c3</citedby><cites>FETCH-LOGICAL-c440t-538781e1ccf015b52c249ab3962115d0fffc033b9b360eeb0ada9908e885476c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3067207$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3067207$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Yardley, J.G</creatorcontrib><creatorcontrib>Reuben, A.J</creatorcontrib><creatorcontrib>McPhedran, R.C</creatorcontrib><title>The transport properties of layers of elliptical cylinders</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>The Rayleigh method has been used in previous work to determine the effective transport properties of a rectangular array of elliptical cylinders for all cases where the ellipses are non-intersecting. However, the calculation of the elliptic lattice sums that naturally arose was numerically inefficient and analytically cumbersome. In this present work we use integral transforms to obtain rapidly convergent series for one-dimensional elliptical lattice sums and use these lattice sums to determine the transport properties of composites constructed from multiple layers of elliptical cylinders. We study the convergence of effective transport properties as a function of the number of layers and show that this convergence is extremely rapid. Further, we use the integral transform representation to exhibit the simplest form of the interior addition formula for harmonic functions in elliptical coordinates.</description><subject>Coefficients</subject><subject>Conductivity</subject><subject>Cylinders</subject><subject>Electric fields</subject><subject>Ellipse</subject><subject>Ellipses</subject><subject>Elliptical cylinders</subject><subject>Geometric lines</subject><subject>Grating</subject><subject>Laplace Transform</subject><subject>Multipoles</subject><subject>Rayleigh Method</subject><subject>Research Article</subject><subject>Series convergence</subject><subject>Stack</subject><subject>Transport phenomena</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9j0tPxCAUhRujic-tKxf9Ax2hvIobYya-osbN-NgRyoDDWEsDTLT_XmrNJLPQFfdyzgfnZNkxBBMIeHXqQycnJQBgAigrt7I9iBksSo7pdpoRxQUBJdzN9kNYJhcnFdvLzmYLnUcv29A5H_POu077aHXInckb2Wv_M-mmsV20Sja56hvbztP9YbZjZBP00e95kD1dXc6mN8X94_Xt9OK-UBiDWBBUsQpqqJQBkNSkVCXmskaclhCSOTDGKIBQzWtEgdY1kHPJOah0VRHMqEIH2WR8V3kXgtdGdN5-SN8LCMTQXAzNxdBcDM0TgEbAuz4Fc8rq2IulW_k2rX9TJyO1DNH59R9oEAFLcjHKNkT9tZalfxeUIUbEc4XFC3y9m9EXLB6SH47-hX1bfFqvxUaatHQ-SIEJGzJQgThJzPm_zBBYuTbqNm6AwqyaRnRzg74BynGfUg</recordid><startdate>20010208</startdate><enddate>20010208</enddate><creator>Yardley, J.G</creator><creator>Reuben, A.J</creator><creator>McPhedran, R.C</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010208</creationdate><title>The transport properties of layers of elliptical cylinders</title><author>Yardley, J.G ; Reuben, A.J ; McPhedran, R.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-538781e1ccf015b52c249ab3962115d0fffc033b9b360eeb0ada9908e885476c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Coefficients</topic><topic>Conductivity</topic><topic>Cylinders</topic><topic>Electric fields</topic><topic>Ellipse</topic><topic>Ellipses</topic><topic>Elliptical cylinders</topic><topic>Geometric lines</topic><topic>Grating</topic><topic>Laplace Transform</topic><topic>Multipoles</topic><topic>Rayleigh Method</topic><topic>Research Article</topic><topic>Series convergence</topic><topic>Stack</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yardley, J.G</creatorcontrib><creatorcontrib>Reuben, A.J</creatorcontrib><creatorcontrib>McPhedran, R.C</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yardley, J.G</au><au>Reuben, A.J</au><au>McPhedran, R.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transport properties of layers of elliptical cylinders</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2001-02-08</date><risdate>2001</risdate><volume>457</volume><issue>2006</issue><spage>395</spage><epage>423</epage><pages>395-423</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>The Rayleigh method has been used in previous work to determine the effective transport properties of a rectangular array of elliptical cylinders for all cases where the ellipses are non-intersecting. However, the calculation of the elliptic lattice sums that naturally arose was numerically inefficient and analytically cumbersome. In this present work we use integral transforms to obtain rapidly convergent series for one-dimensional elliptical lattice sums and use these lattice sums to determine the transport properties of composites constructed from multiple layers of elliptical cylinders. We study the convergence of effective transport properties as a function of the number of layers and show that this convergence is extremely rapid. Further, we use the integral transform representation to exhibit the simplest form of the interior addition formula for harmonic functions in elliptical coordinates.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2000.0672</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2001-02, Vol.457 (2006), p.395-423
issn 1364-5021
1471-2946
language eng
recordid cdi_crossref_primary_10_1098_rspa_2000_0672
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection
subjects Coefficients
Conductivity
Cylinders
Electric fields
Ellipse
Ellipses
Elliptical cylinders
Geometric lines
Grating
Laplace Transform
Multipoles
Rayleigh Method
Research Article
Series convergence
Stack
Transport phenomena
title The transport properties of layers of elliptical cylinders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transport%20properties%20of%20layers%20of%20elliptical%20cylinders&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Yardley,%20J.G&rft.date=2001-02-08&rft.volume=457&rft.issue=2006&rft.spage=395&rft.epage=423&rft.pages=395-423&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2000.0672&rft_dat=%3Cjstor_cross%3E3067207%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3067207&rfr_iscdi=true