The transport properties of layers of elliptical cylinders
The Rayleigh method has been used in previous work to determine the effective transport properties of a rectangular array of elliptical cylinders for all cases where the ellipses are non-intersecting. However, the calculation of the elliptic lattice sums that naturally arose was numerically ineffici...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2001-02, Vol.457 (2006), p.395-423 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 423 |
---|---|
container_issue | 2006 |
container_start_page | 395 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 457 |
creator | Yardley, J.G Reuben, A.J McPhedran, R.C |
description | The Rayleigh method has been used in previous work to determine the effective transport properties of a rectangular array of elliptical cylinders for all cases where the ellipses are non-intersecting. However, the calculation of the elliptic lattice sums that naturally arose was numerically inefficient and analytically cumbersome. In this present work we use integral transforms to obtain rapidly convergent series for one-dimensional elliptical lattice sums and use these lattice sums to determine the transport properties of composites constructed from multiple layers of elliptical cylinders. We study the convergence of effective transport properties as a function of the number of layers and show that this convergence is extremely rapid. Further, we use the integral transform representation to exhibit the simplest form of the interior addition formula for harmonic functions in elliptical coordinates. |
doi_str_mv | 10.1098/rspa.2000.0672 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_2000_0672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3067207</jstor_id><sourcerecordid>3067207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-538781e1ccf015b52c249ab3962115d0fffc033b9b360eeb0ada9908e885476c3</originalsourceid><addsrcrecordid>eNp9j0tPxCAUhRujic-tKxf9Ax2hvIobYya-osbN-NgRyoDDWEsDTLT_XmrNJLPQFfdyzgfnZNkxBBMIeHXqQycnJQBgAigrt7I9iBksSo7pdpoRxQUBJdzN9kNYJhcnFdvLzmYLnUcv29A5H_POu077aHXInckb2Wv_M-mmsV20Sja56hvbztP9YbZjZBP00e95kD1dXc6mN8X94_Xt9OK-UBiDWBBUsQpqqJQBkNSkVCXmskaclhCSOTDGKIBQzWtEgdY1kHPJOah0VRHMqEIH2WR8V3kXgtdGdN5-SN8LCMTQXAzNxdBcDM0TgEbAuz4Fc8rq2IulW_k2rX9TJyO1DNH59R9oEAFLcjHKNkT9tZalfxeUIUbEc4XFC3y9m9EXLB6SH47-hX1bfFqvxUaatHQ-SIEJGzJQgThJzPm_zBBYuTbqNm6AwqyaRnRzg74BynGfUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The transport properties of layers of elliptical cylinders</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Yardley, J.G ; Reuben, A.J ; McPhedran, R.C</creator><creatorcontrib>Yardley, J.G ; Reuben, A.J ; McPhedran, R.C</creatorcontrib><description>The Rayleigh method has been used in previous work to determine the effective transport properties of a rectangular array of elliptical cylinders for all cases where the ellipses are non-intersecting. However, the calculation of the elliptic lattice sums that naturally arose was numerically inefficient and analytically cumbersome. In this present work we use integral transforms to obtain rapidly convergent series for one-dimensional elliptical lattice sums and use these lattice sums to determine the transport properties of composites constructed from multiple layers of elliptical cylinders. We study the convergence of effective transport properties as a function of the number of layers and show that this convergence is extremely rapid. Further, we use the integral transform representation to exhibit the simplest form of the interior addition formula for harmonic functions in elliptical coordinates.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2000.0672</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Coefficients ; Conductivity ; Cylinders ; Electric fields ; Ellipse ; Ellipses ; Elliptical cylinders ; Geometric lines ; Grating ; Laplace Transform ; Multipoles ; Rayleigh Method ; Research Article ; Series convergence ; Stack ; Transport phenomena</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2001-02, Vol.457 (2006), p.395-423</ispartof><rights>Copyright 2001 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-538781e1ccf015b52c249ab3962115d0fffc033b9b360eeb0ada9908e885476c3</citedby><cites>FETCH-LOGICAL-c440t-538781e1ccf015b52c249ab3962115d0fffc033b9b360eeb0ada9908e885476c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3067207$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3067207$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Yardley, J.G</creatorcontrib><creatorcontrib>Reuben, A.J</creatorcontrib><creatorcontrib>McPhedran, R.C</creatorcontrib><title>The transport properties of layers of elliptical cylinders</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>The Rayleigh method has been used in previous work to determine the effective transport properties of a rectangular array of elliptical cylinders for all cases where the ellipses are non-intersecting. However, the calculation of the elliptic lattice sums that naturally arose was numerically inefficient and analytically cumbersome. In this present work we use integral transforms to obtain rapidly convergent series for one-dimensional elliptical lattice sums and use these lattice sums to determine the transport properties of composites constructed from multiple layers of elliptical cylinders. We study the convergence of effective transport properties as a function of the number of layers and show that this convergence is extremely rapid. Further, we use the integral transform representation to exhibit the simplest form of the interior addition formula for harmonic functions in elliptical coordinates.</description><subject>Coefficients</subject><subject>Conductivity</subject><subject>Cylinders</subject><subject>Electric fields</subject><subject>Ellipse</subject><subject>Ellipses</subject><subject>Elliptical cylinders</subject><subject>Geometric lines</subject><subject>Grating</subject><subject>Laplace Transform</subject><subject>Multipoles</subject><subject>Rayleigh Method</subject><subject>Research Article</subject><subject>Series convergence</subject><subject>Stack</subject><subject>Transport phenomena</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9j0tPxCAUhRujic-tKxf9Ax2hvIobYya-osbN-NgRyoDDWEsDTLT_XmrNJLPQFfdyzgfnZNkxBBMIeHXqQycnJQBgAigrt7I9iBksSo7pdpoRxQUBJdzN9kNYJhcnFdvLzmYLnUcv29A5H_POu077aHXInckb2Wv_M-mmsV20Sja56hvbztP9YbZjZBP00e95kD1dXc6mN8X94_Xt9OK-UBiDWBBUsQpqqJQBkNSkVCXmskaclhCSOTDGKIBQzWtEgdY1kHPJOah0VRHMqEIH2WR8V3kXgtdGdN5-SN8LCMTQXAzNxdBcDM0TgEbAuz4Fc8rq2IulW_k2rX9TJyO1DNH59R9oEAFLcjHKNkT9tZalfxeUIUbEc4XFC3y9m9EXLB6SH47-hX1bfFqvxUaatHQ-SIEJGzJQgThJzPm_zBBYuTbqNm6AwqyaRnRzg74BynGfUg</recordid><startdate>20010208</startdate><enddate>20010208</enddate><creator>Yardley, J.G</creator><creator>Reuben, A.J</creator><creator>McPhedran, R.C</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010208</creationdate><title>The transport properties of layers of elliptical cylinders</title><author>Yardley, J.G ; Reuben, A.J ; McPhedran, R.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-538781e1ccf015b52c249ab3962115d0fffc033b9b360eeb0ada9908e885476c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Coefficients</topic><topic>Conductivity</topic><topic>Cylinders</topic><topic>Electric fields</topic><topic>Ellipse</topic><topic>Ellipses</topic><topic>Elliptical cylinders</topic><topic>Geometric lines</topic><topic>Grating</topic><topic>Laplace Transform</topic><topic>Multipoles</topic><topic>Rayleigh Method</topic><topic>Research Article</topic><topic>Series convergence</topic><topic>Stack</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yardley, J.G</creatorcontrib><creatorcontrib>Reuben, A.J</creatorcontrib><creatorcontrib>McPhedran, R.C</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yardley, J.G</au><au>Reuben, A.J</au><au>McPhedran, R.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transport properties of layers of elliptical cylinders</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2001-02-08</date><risdate>2001</risdate><volume>457</volume><issue>2006</issue><spage>395</spage><epage>423</epage><pages>395-423</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>The Rayleigh method has been used in previous work to determine the effective transport properties of a rectangular array of elliptical cylinders for all cases where the ellipses are non-intersecting. However, the calculation of the elliptic lattice sums that naturally arose was numerically inefficient and analytically cumbersome. In this present work we use integral transforms to obtain rapidly convergent series for one-dimensional elliptical lattice sums and use these lattice sums to determine the transport properties of composites constructed from multiple layers of elliptical cylinders. We study the convergence of effective transport properties as a function of the number of layers and show that this convergence is extremely rapid. Further, we use the integral transform representation to exhibit the simplest form of the interior addition formula for harmonic functions in elliptical coordinates.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2000.0672</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2001-02, Vol.457 (2006), p.395-423 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rspa_2000_0672 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection |
subjects | Coefficients Conductivity Cylinders Electric fields Ellipse Ellipses Elliptical cylinders Geometric lines Grating Laplace Transform Multipoles Rayleigh Method Research Article Series convergence Stack Transport phenomena |
title | The transport properties of layers of elliptical cylinders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transport%20properties%20of%20layers%20of%20elliptical%20cylinders&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Yardley,%20J.G&rft.date=2001-02-08&rft.volume=457&rft.issue=2006&rft.spage=395&rft.epage=423&rft.pages=395-423&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2000.0672&rft_dat=%3Cjstor_cross%3E3067207%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3067207&rfr_iscdi=true |