Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions
We consider a phase integral interpretation of the two-state time-dependent exponential model of Nikitin. We generalize to complex energies and complex interactions following previous workers (Krstić & Janev 1988). Applying the method of steepest descent to the Whittaker functions for which all...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical and physical sciences Mathematical and physical sciences, 1992-07, Vol.438 (1902), p.1-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1902 |
container_start_page | 1 |
container_title | Proceedings of the Royal Society. A, Mathematical and physical sciences |
container_volume | 438 |
creator | O'Rourke, S. F. C. Crothers, Derrick Samuel Frederick |
description | We consider a phase integral interpretation of the two-state time-dependent exponential model of Nikitin. We generalize to complex energies and complex interactions following previous workers (Krstić & Janev 1988). Applying the method of steepest descent to the Whittaker functions for which all three parameters are large and complex we obtain the adiabatic semi-classical scattering matrix of non-adiabatic transitions. The matrix elements which are expressed in terms of phase integrals taken over physical potentials, are shown to reduce correctly in known limiting cases. These include the Demkov, Rosen-Zener and parabolic models and also the case of symmetric and non-symmetric resonance. It has been previously shown by Coveney et al. that the elastic Stueckelberg non-adiabatic phase may be interpreted as arising from adiabatic parallel transport of the state vector round a closed contour or circuit in the complex time (t) plane, even though the hamiltonian is real hermitian on the real t-axis. For a hamiltonian matrix which is complex hermitian on the real t-axis, it has been shown by Berry that anholonomy results in a non-integrable real geometric phase in adiabatic parallel transport around a circuit in real space. It is shown that the Berry phase interpretation also applies to the generalized Whittaker model and all of the above mentioned models, and that it involves contributions from both real and complex closed-circuit adiabatic phases. |
doi_str_mv | 10.1098/rspa.1992.0090 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_1992_0090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>52069</jstor_id><sourcerecordid>52069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-bbc93eb0d49ead461ad11d5460e4417bd0adc91ccd9c9e1706ab727aa1547a573</originalsourceid><addsrcrecordid>eNp9kEFv1DAQRiMEEqVw5cApB67ZehInjg8cQtRSpAIVLYib5TjOrrfZ2LK9ZcOvx0nQigrRk-PMe9-MJ4peA1oBouWZdYavgNJ0hRBFT6ITwASSlOLiafjOCpzkKIXn0QvntiggeUlOoq4ypleCe6WHWHfxjbd6WCe13offwzqu3LgzXnsl4vOD4YMLnIu9jv1GxrXemV4e4s_qTnk1xJ90K_sppfJ6F4xa972ajZfRs473Tr76c55G3y7Ob-vL5OrLh491dZWIHIFPmkbQTDaoxVTyFhfAW4A2xwWSGANpWsRbQUGIlgoqgaCCNyQlnEOOCc9JdhqtllxhtXNWdsxYteN2ZIDYtCU2bYlNW2LTloLwdhEMd4L3neWDUO5o4TyDAqbcbMGsHsP8WijpR7bVezuE6__D3WPW15vrKsDoHmelAoqCVWaASJpizH4pM8dNAAsAU87tJZuxh23-7fpm6bp1XtvjU_IUFTQUk6WonJeHY5HbO1aQjOTse4nZ5fvy-uK2zNiPwL9b-I1ab34qK9mDt8ythR68HPw85TwfsG7f98y0XfDPHvX1aKzjf6nZbxK5388</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>O'Rourke, S. F. C. ; Crothers, Derrick Samuel Frederick</creator><creatorcontrib>O'Rourke, S. F. C. ; Crothers, Derrick Samuel Frederick</creatorcontrib><description>We consider a phase integral interpretation of the two-state time-dependent exponential model of Nikitin. We generalize to complex energies and complex interactions following previous workers (Krstić & Janev 1988). Applying the method of steepest descent to the Whittaker functions for which all three parameters are large and complex we obtain the adiabatic semi-classical scattering matrix of non-adiabatic transitions. The matrix elements which are expressed in terms of phase integrals taken over physical potentials, are shown to reduce correctly in known limiting cases. These include the Demkov, Rosen-Zener and parabolic models and also the case of symmetric and non-symmetric resonance. It has been previously shown by Coveney et al. that the elastic Stueckelberg non-adiabatic phase may be interpreted as arising from adiabatic parallel transport of the state vector round a closed contour or circuit in the complex time (t) plane, even though the hamiltonian is real hermitian on the real t-axis. For a hamiltonian matrix which is complex hermitian on the real t-axis, it has been shown by Berry that anholonomy results in a non-integrable real geometric phase in adiabatic parallel transport around a circuit in real space. It is shown that the Berry phase interpretation also applies to the generalized Whittaker model and all of the above mentioned models, and that it involves contributions from both real and complex closed-circuit adiabatic phases.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0962-8444</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9177</identifier><identifier>DOI: 10.1098/rspa.1992.0090</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Atomic collisions ; Exact sciences and technology ; Mathematical expressions ; Mathematical independent variables ; Mathematical methods in physics ; Numerical approximation and analysis ; Parametric models ; Physics ; S matrix theory ; Saddle points ; Trajectories ; Transition points ; Transition probabilities ; Whittaker functions</subject><ispartof>Proceedings of the Royal Society. A, Mathematical and physical sciences, 1992-07, Vol.438 (1902), p.1-22</ispartof><rights>Copyright 1992 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-bbc93eb0d49ead461ad11d5460e4417bd0adc91ccd9c9e1706ab727aa1547a573</citedby><cites>FETCH-LOGICAL-c501t-bbc93eb0d49ead461ad11d5460e4417bd0adc91ccd9c9e1706ab727aa1547a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/52069$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/52069$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4531617$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Rourke, S. F. C.</creatorcontrib><creatorcontrib>Crothers, Derrick Samuel Frederick</creatorcontrib><title>Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions</title><title>Proceedings of the Royal Society. A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>We consider a phase integral interpretation of the two-state time-dependent exponential model of Nikitin. We generalize to complex energies and complex interactions following previous workers (Krstić & Janev 1988). Applying the method of steepest descent to the Whittaker functions for which all three parameters are large and complex we obtain the adiabatic semi-classical scattering matrix of non-adiabatic transitions. The matrix elements which are expressed in terms of phase integrals taken over physical potentials, are shown to reduce correctly in known limiting cases. These include the Demkov, Rosen-Zener and parabolic models and also the case of symmetric and non-symmetric resonance. It has been previously shown by Coveney et al. that the elastic Stueckelberg non-adiabatic phase may be interpreted as arising from adiabatic parallel transport of the state vector round a closed contour or circuit in the complex time (t) plane, even though the hamiltonian is real hermitian on the real t-axis. For a hamiltonian matrix which is complex hermitian on the real t-axis, it has been shown by Berry that anholonomy results in a non-integrable real geometric phase in adiabatic parallel transport around a circuit in real space. It is shown that the Berry phase interpretation also applies to the generalized Whittaker model and all of the above mentioned models, and that it involves contributions from both real and complex closed-circuit adiabatic phases.</description><subject>Atomic collisions</subject><subject>Exact sciences and technology</subject><subject>Mathematical expressions</subject><subject>Mathematical independent variables</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Parametric models</subject><subject>Physics</subject><subject>S matrix theory</subject><subject>Saddle points</subject><subject>Trajectories</subject><subject>Transition points</subject><subject>Transition probabilities</subject><subject>Whittaker functions</subject><issn>1364-5021</issn><issn>0962-8444</issn><issn>1471-2946</issn><issn>2053-9177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQRiMEEqVw5cApB67ZehInjg8cQtRSpAIVLYib5TjOrrfZ2LK9ZcOvx0nQigrRk-PMe9-MJ4peA1oBouWZdYavgNJ0hRBFT6ITwASSlOLiafjOCpzkKIXn0QvntiggeUlOoq4ypleCe6WHWHfxjbd6WCe13offwzqu3LgzXnsl4vOD4YMLnIu9jv1GxrXemV4e4s_qTnk1xJ90K_sppfJ6F4xa972ajZfRs473Tr76c55G3y7Ob-vL5OrLh491dZWIHIFPmkbQTDaoxVTyFhfAW4A2xwWSGANpWsRbQUGIlgoqgaCCNyQlnEOOCc9JdhqtllxhtXNWdsxYteN2ZIDYtCU2bYlNW2LTloLwdhEMd4L3neWDUO5o4TyDAqbcbMGsHsP8WijpR7bVezuE6__D3WPW15vrKsDoHmelAoqCVWaASJpizH4pM8dNAAsAU87tJZuxh23-7fpm6bp1XtvjU_IUFTQUk6WonJeHY5HbO1aQjOTse4nZ5fvy-uK2zNiPwL9b-I1ab34qK9mDt8ythR68HPw85TwfsG7f98y0XfDPHvX1aKzjf6nZbxK5388</recordid><startdate>19920708</startdate><enddate>19920708</enddate><creator>O'Rourke, S. F. C.</creator><creator>Crothers, Derrick Samuel Frederick</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920708</creationdate><title>Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions</title><author>O'Rourke, S. F. C. ; Crothers, Derrick Samuel Frederick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-bbc93eb0d49ead461ad11d5460e4417bd0adc91ccd9c9e1706ab727aa1547a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Atomic collisions</topic><topic>Exact sciences and technology</topic><topic>Mathematical expressions</topic><topic>Mathematical independent variables</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Parametric models</topic><topic>Physics</topic><topic>S matrix theory</topic><topic>Saddle points</topic><topic>Trajectories</topic><topic>Transition points</topic><topic>Transition probabilities</topic><topic>Whittaker functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Rourke, S. F. C.</creatorcontrib><creatorcontrib>Crothers, Derrick Samuel Frederick</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Rourke, S. F. C.</au><au>Crothers, Derrick Samuel Frederick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1992-07-08</date><risdate>1992</risdate><volume>438</volume><issue>1902</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>1364-5021</issn><issn>0962-8444</issn><eissn>1471-2946</eissn><eissn>2053-9177</eissn><abstract>We consider a phase integral interpretation of the two-state time-dependent exponential model of Nikitin. We generalize to complex energies and complex interactions following previous workers (Krstić & Janev 1988). Applying the method of steepest descent to the Whittaker functions for which all three parameters are large and complex we obtain the adiabatic semi-classical scattering matrix of non-adiabatic transitions. The matrix elements which are expressed in terms of phase integrals taken over physical potentials, are shown to reduce correctly in known limiting cases. These include the Demkov, Rosen-Zener and parabolic models and also the case of symmetric and non-symmetric resonance. It has been previously shown by Coveney et al. that the elastic Stueckelberg non-adiabatic phase may be interpreted as arising from adiabatic parallel transport of the state vector round a closed contour or circuit in the complex time (t) plane, even though the hamiltonian is real hermitian on the real t-axis. For a hamiltonian matrix which is complex hermitian on the real t-axis, it has been shown by Berry that anholonomy results in a non-integrable real geometric phase in adiabatic parallel transport around a circuit in real space. It is shown that the Berry phase interpretation also applies to the generalized Whittaker model and all of the above mentioned models, and that it involves contributions from both real and complex closed-circuit adiabatic phases.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1992.0090</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical and physical sciences, 1992-07, Vol.438 (1902), p.1-22 |
issn | 1364-5021 0962-8444 1471-2946 2053-9177 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rspa_1992_0090 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics |
subjects | Atomic collisions Exact sciences and technology Mathematical expressions Mathematical independent variables Mathematical methods in physics Numerical approximation and analysis Parametric models Physics S matrix theory Saddle points Trajectories Transition points Transition probabilities Whittaker functions |
title | Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Strong-Coupling%20Asymptotic%20Expansions%20to%20the%20Complex%20Nikitin%20Model%20of%20Atomic%20Collisions&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical%20and%20physical%20sciences&rft.au=O'Rourke,%20S.%20F.%20C.&rft.date=1992-07-08&rft.volume=438&rft.issue=1902&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1992.0090&rft_dat=%3Cjstor_cross%3E52069%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=52069&rfr_iscdi=true |