Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions

We consider a phase integral interpretation of the two-state time-dependent exponential model of Nikitin. We generalize to complex energies and complex interactions following previous workers (Krstić & Janev 1988). Applying the method of steepest descent to the Whittaker functions for which all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical and physical sciences Mathematical and physical sciences, 1992-07, Vol.438 (1902), p.1-22
Hauptverfasser: O'Rourke, S. F. C., Crothers, Derrick Samuel Frederick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1902
container_start_page 1
container_title Proceedings of the Royal Society. A, Mathematical and physical sciences
container_volume 438
creator O'Rourke, S. F. C.
Crothers, Derrick Samuel Frederick
description We consider a phase integral interpretation of the two-state time-dependent exponential model of Nikitin. We generalize to complex energies and complex interactions following previous workers (Krstić & Janev 1988). Applying the method of steepest descent to the Whittaker functions for which all three parameters are large and complex we obtain the adiabatic semi-classical scattering matrix of non-adiabatic transitions. The matrix elements which are expressed in terms of phase integrals taken over physical potentials, are shown to reduce correctly in known limiting cases. These include the Demkov, Rosen-Zener and parabolic models and also the case of symmetric and non-symmetric resonance. It has been previously shown by Coveney et al. that the elastic Stueckelberg non-adiabatic phase may be interpreted as arising from adiabatic parallel transport of the state vector round a closed contour or circuit in the complex time (t) plane, even though the hamiltonian is real hermitian on the real t-axis. For a hamiltonian matrix which is complex hermitian on the real t-axis, it has been shown by Berry that anholonomy results in a non-integrable real geometric phase in adiabatic parallel transport around a circuit in real space. It is shown that the Berry phase interpretation also applies to the generalized Whittaker model and all of the above mentioned models, and that it involves contributions from both real and complex closed-circuit adiabatic phases.
doi_str_mv 10.1098/rspa.1992.0090
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_1992_0090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>52069</jstor_id><sourcerecordid>52069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-bbc93eb0d49ead461ad11d5460e4417bd0adc91ccd9c9e1706ab727aa1547a573</originalsourceid><addsrcrecordid>eNp9kEFv1DAQRiMEEqVw5cApB67ZehInjg8cQtRSpAIVLYib5TjOrrfZ2LK9ZcOvx0nQigrRk-PMe9-MJ4peA1oBouWZdYavgNJ0hRBFT6ITwASSlOLiafjOCpzkKIXn0QvntiggeUlOoq4ypleCe6WHWHfxjbd6WCe13offwzqu3LgzXnsl4vOD4YMLnIu9jv1GxrXemV4e4s_qTnk1xJ90K_sppfJ6F4xa972ajZfRs473Tr76c55G3y7Ob-vL5OrLh491dZWIHIFPmkbQTDaoxVTyFhfAW4A2xwWSGANpWsRbQUGIlgoqgaCCNyQlnEOOCc9JdhqtllxhtXNWdsxYteN2ZIDYtCU2bYlNW2LTloLwdhEMd4L3neWDUO5o4TyDAqbcbMGsHsP8WijpR7bVezuE6__D3WPW15vrKsDoHmelAoqCVWaASJpizH4pM8dNAAsAU87tJZuxh23-7fpm6bp1XtvjU_IUFTQUk6WonJeHY5HbO1aQjOTse4nZ5fvy-uK2zNiPwL9b-I1ab34qK9mDt8ythR68HPw85TwfsG7f98y0XfDPHvX1aKzjf6nZbxK5388</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>O'Rourke, S. F. C. ; Crothers, Derrick Samuel Frederick</creator><creatorcontrib>O'Rourke, S. F. C. ; Crothers, Derrick Samuel Frederick</creatorcontrib><description>We consider a phase integral interpretation of the two-state time-dependent exponential model of Nikitin. We generalize to complex energies and complex interactions following previous workers (Krstić &amp; Janev 1988). Applying the method of steepest descent to the Whittaker functions for which all three parameters are large and complex we obtain the adiabatic semi-classical scattering matrix of non-adiabatic transitions. The matrix elements which are expressed in terms of phase integrals taken over physical potentials, are shown to reduce correctly in known limiting cases. These include the Demkov, Rosen-Zener and parabolic models and also the case of symmetric and non-symmetric resonance. It has been previously shown by Coveney et al. that the elastic Stueckelberg non-adiabatic phase may be interpreted as arising from adiabatic parallel transport of the state vector round a closed contour or circuit in the complex time (t) plane, even though the hamiltonian is real hermitian on the real t-axis. For a hamiltonian matrix which is complex hermitian on the real t-axis, it has been shown by Berry that anholonomy results in a non-integrable real geometric phase in adiabatic parallel transport around a circuit in real space. It is shown that the Berry phase interpretation also applies to the generalized Whittaker model and all of the above mentioned models, and that it involves contributions from both real and complex closed-circuit adiabatic phases.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0962-8444</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9177</identifier><identifier>DOI: 10.1098/rspa.1992.0090</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Atomic collisions ; Exact sciences and technology ; Mathematical expressions ; Mathematical independent variables ; Mathematical methods in physics ; Numerical approximation and analysis ; Parametric models ; Physics ; S matrix theory ; Saddle points ; Trajectories ; Transition points ; Transition probabilities ; Whittaker functions</subject><ispartof>Proceedings of the Royal Society. A, Mathematical and physical sciences, 1992-07, Vol.438 (1902), p.1-22</ispartof><rights>Copyright 1992 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-bbc93eb0d49ead461ad11d5460e4417bd0adc91ccd9c9e1706ab727aa1547a573</citedby><cites>FETCH-LOGICAL-c501t-bbc93eb0d49ead461ad11d5460e4417bd0adc91ccd9c9e1706ab727aa1547a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/52069$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/52069$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4531617$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Rourke, S. F. C.</creatorcontrib><creatorcontrib>Crothers, Derrick Samuel Frederick</creatorcontrib><title>Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions</title><title>Proceedings of the Royal Society. A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>We consider a phase integral interpretation of the two-state time-dependent exponential model of Nikitin. We generalize to complex energies and complex interactions following previous workers (Krstić &amp; Janev 1988). Applying the method of steepest descent to the Whittaker functions for which all three parameters are large and complex we obtain the adiabatic semi-classical scattering matrix of non-adiabatic transitions. The matrix elements which are expressed in terms of phase integrals taken over physical potentials, are shown to reduce correctly in known limiting cases. These include the Demkov, Rosen-Zener and parabolic models and also the case of symmetric and non-symmetric resonance. It has been previously shown by Coveney et al. that the elastic Stueckelberg non-adiabatic phase may be interpreted as arising from adiabatic parallel transport of the state vector round a closed contour or circuit in the complex time (t) plane, even though the hamiltonian is real hermitian on the real t-axis. For a hamiltonian matrix which is complex hermitian on the real t-axis, it has been shown by Berry that anholonomy results in a non-integrable real geometric phase in adiabatic parallel transport around a circuit in real space. It is shown that the Berry phase interpretation also applies to the generalized Whittaker model and all of the above mentioned models, and that it involves contributions from both real and complex closed-circuit adiabatic phases.</description><subject>Atomic collisions</subject><subject>Exact sciences and technology</subject><subject>Mathematical expressions</subject><subject>Mathematical independent variables</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Parametric models</subject><subject>Physics</subject><subject>S matrix theory</subject><subject>Saddle points</subject><subject>Trajectories</subject><subject>Transition points</subject><subject>Transition probabilities</subject><subject>Whittaker functions</subject><issn>1364-5021</issn><issn>0962-8444</issn><issn>1471-2946</issn><issn>2053-9177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQRiMEEqVw5cApB67ZehInjg8cQtRSpAIVLYib5TjOrrfZ2LK9ZcOvx0nQigrRk-PMe9-MJ4peA1oBouWZdYavgNJ0hRBFT6ITwASSlOLiafjOCpzkKIXn0QvntiggeUlOoq4ypleCe6WHWHfxjbd6WCe13offwzqu3LgzXnsl4vOD4YMLnIu9jv1GxrXemV4e4s_qTnk1xJ90K_sppfJ6F4xa972ajZfRs473Tr76c55G3y7Ob-vL5OrLh491dZWIHIFPmkbQTDaoxVTyFhfAW4A2xwWSGANpWsRbQUGIlgoqgaCCNyQlnEOOCc9JdhqtllxhtXNWdsxYteN2ZIDYtCU2bYlNW2LTloLwdhEMd4L3neWDUO5o4TyDAqbcbMGsHsP8WijpR7bVezuE6__D3WPW15vrKsDoHmelAoqCVWaASJpizH4pM8dNAAsAU87tJZuxh23-7fpm6bp1XtvjU_IUFTQUk6WonJeHY5HbO1aQjOTse4nZ5fvy-uK2zNiPwL9b-I1ab34qK9mDt8ythR68HPw85TwfsG7f98y0XfDPHvX1aKzjf6nZbxK5388</recordid><startdate>19920708</startdate><enddate>19920708</enddate><creator>O'Rourke, S. F. C.</creator><creator>Crothers, Derrick Samuel Frederick</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920708</creationdate><title>Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions</title><author>O'Rourke, S. F. C. ; Crothers, Derrick Samuel Frederick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-bbc93eb0d49ead461ad11d5460e4417bd0adc91ccd9c9e1706ab727aa1547a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Atomic collisions</topic><topic>Exact sciences and technology</topic><topic>Mathematical expressions</topic><topic>Mathematical independent variables</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Parametric models</topic><topic>Physics</topic><topic>S matrix theory</topic><topic>Saddle points</topic><topic>Trajectories</topic><topic>Transition points</topic><topic>Transition probabilities</topic><topic>Whittaker functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Rourke, S. F. C.</creatorcontrib><creatorcontrib>Crothers, Derrick Samuel Frederick</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Rourke, S. F. C.</au><au>Crothers, Derrick Samuel Frederick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1992-07-08</date><risdate>1992</risdate><volume>438</volume><issue>1902</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>1364-5021</issn><issn>0962-8444</issn><eissn>1471-2946</eissn><eissn>2053-9177</eissn><abstract>We consider a phase integral interpretation of the two-state time-dependent exponential model of Nikitin. We generalize to complex energies and complex interactions following previous workers (Krstić &amp; Janev 1988). Applying the method of steepest descent to the Whittaker functions for which all three parameters are large and complex we obtain the adiabatic semi-classical scattering matrix of non-adiabatic transitions. The matrix elements which are expressed in terms of phase integrals taken over physical potentials, are shown to reduce correctly in known limiting cases. These include the Demkov, Rosen-Zener and parabolic models and also the case of symmetric and non-symmetric resonance. It has been previously shown by Coveney et al. that the elastic Stueckelberg non-adiabatic phase may be interpreted as arising from adiabatic parallel transport of the state vector round a closed contour or circuit in the complex time (t) plane, even though the hamiltonian is real hermitian on the real t-axis. For a hamiltonian matrix which is complex hermitian on the real t-axis, it has been shown by Berry that anholonomy results in a non-integrable real geometric phase in adiabatic parallel transport around a circuit in real space. It is shown that the Berry phase interpretation also applies to the generalized Whittaker model and all of the above mentioned models, and that it involves contributions from both real and complex closed-circuit adiabatic phases.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1992.0090</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical and physical sciences, 1992-07, Vol.438 (1902), p.1-22
issn 1364-5021
0962-8444
1471-2946
2053-9177
language eng
recordid cdi_crossref_primary_10_1098_rspa_1992_0090
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Atomic collisions
Exact sciences and technology
Mathematical expressions
Mathematical independent variables
Mathematical methods in physics
Numerical approximation and analysis
Parametric models
Physics
S matrix theory
Saddle points
Trajectories
Transition points
Transition probabilities
Whittaker functions
title Application of Strong-Coupling Asymptotic Expansions to the Complex Nikitin Model of Atomic Collisions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Strong-Coupling%20Asymptotic%20Expansions%20to%20the%20Complex%20Nikitin%20Model%20of%20Atomic%20Collisions&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical%20and%20physical%20sciences&rft.au=O'Rourke,%20S.%20F.%20C.&rft.date=1992-07-08&rft.volume=438&rft.issue=1902&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1992.0090&rft_dat=%3Cjstor_cross%3E52069%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=52069&rfr_iscdi=true