The two-dimensional slow motion of viscous fluids
The present paper is a contribution to the treatment of problems which require a solution of the differential equation▽4ψ = 0. Amongst such problems are to be found not only the very slow motions of a viscous fluid in two dimensions, but also the flexure of thin flat plates. The prosecution of the i...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character Containing papers of a mathematical and physical character, 1922-01, Vol.100 (705), p.394-413 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 413 |
---|---|
container_issue | 705 |
container_start_page | 394 |
container_title | Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character |
container_volume | 100 |
creator | Bairstow, Leonard Cave, B. M. Lang, E. D. |
description | The present paper is a contribution to the treatment of problems which require a solution of the differential equation▽4ψ = 0. Amongst such problems are to be found not only the very slow motions of a viscous fluid in two dimensions, but also the flexure of thin flat plates. The prosecution of the investigation has been made possible by the support of the Department of Scientific and Industrial Research, which has provided financial assistance to enable two of us to devote the whole of our time to the research, and our thanks are offered to the Department for its assistance. We also desire to acknowledge the facilities afforded by the Governing Body of the Imperial College of Science and Technology in placing a room at our disposal in the Department of Aeronautics. |
doi_str_mv | 10.1098/rspa.1922.0004 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_1922_0004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>93966</jstor_id><sourcerecordid>93966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-a63739480c0c4d738557c37a8f864466b88073c4ba0664bfa91e2cab542ce5083</originalsourceid><addsrcrecordid>eNp9j0tLAzEUhYMoWKtbF67mD0y9mbyXUqxaBcUX4iakaQZT26Ym09b6652xUhDR1eVy7jnnfggdYuhgUPI4ppnpYFUUHQCgW6hVACO5wgy2UQsUgxwXIHbRXkojAMYwly2E719cVi1DPvQTN00-TM04S-OwzCahqrcslNnCJxvmKSvHcz9M-2inNOPkDr5nGz30Tu-75_nV9dlF9-QqtxTzKjecCKKoBAuWDgWRjAlLhJGl5JRyPpASBLF0YIBzOiiNwq6wZsBoYR0DSdqos861MaQUXaln0U9MXGkMugHWDbBugHUDXBve1oYYVvVjwXpXrfQozGPNlPTt3c0JVsAWGMALYLruwCAwp1J_-NlXWqPX2aB9SnOnm6ufJb87yX-df356tHaNUhXihksRxXkt5mvRp8q9b0QTXzUXRDD9KKnuP_dJ76l41pfkE_IJlgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The two-dimensional slow motion of viscous fluids</title><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics Collection</source><creator>Bairstow, Leonard ; Cave, B. M. ; Lang, E. D.</creator><creatorcontrib>Bairstow, Leonard ; Cave, B. M. ; Lang, E. D.</creatorcontrib><description>The present paper is a contribution to the treatment of problems which require a solution of the differential equation▽4ψ = 0. Amongst such problems are to be found not only the very slow motions of a viscous fluid in two dimensions, but also the flexure of thin flat plates. The prosecution of the investigation has been made possible by the support of the Department of Scientific and Industrial Research, which has provided financial assistance to enable two of us to devote the whole of our time to the research, and our thanks are offered to the Department for its assistance. We also desire to acknowledge the facilities afforded by the Governing Body of the Imperial College of Science and Technology in placing a room at our disposal in the Department of Aeronautics.</description><identifier>ISSN: 0950-1207</identifier><identifier>EISSN: 2053-9150</identifier><identifier>DOI: 10.1098/rspa.1922.0004</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Approximation ; Boundary conditions ; Cylinders ; Differential equations ; Infinity ; Log integral function ; Mathematical expressions ; Sine function ; Stream functions ; Viscosity</subject><ispartof>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 1922-01, Vol.100 (705), p.394-413</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-a63739480c0c4d738557c37a8f864466b88073c4ba0664bfa91e2cab542ce5083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/93966$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/93966$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27901,27902,57996,58229</link.rule.ids></links><search><creatorcontrib>Bairstow, Leonard</creatorcontrib><creatorcontrib>Cave, B. M.</creatorcontrib><creatorcontrib>Lang, E. D.</creatorcontrib><title>The two-dimensional slow motion of viscous fluids</title><title>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>The present paper is a contribution to the treatment of problems which require a solution of the differential equation▽4ψ = 0. Amongst such problems are to be found not only the very slow motions of a viscous fluid in two dimensions, but also the flexure of thin flat plates. The prosecution of the investigation has been made possible by the support of the Department of Scientific and Industrial Research, which has provided financial assistance to enable two of us to devote the whole of our time to the research, and our thanks are offered to the Department for its assistance. We also desire to acknowledge the facilities afforded by the Governing Body of the Imperial College of Science and Technology in placing a room at our disposal in the Department of Aeronautics.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Cylinders</subject><subject>Differential equations</subject><subject>Infinity</subject><subject>Log integral function</subject><subject>Mathematical expressions</subject><subject>Sine function</subject><subject>Stream functions</subject><subject>Viscosity</subject><issn>0950-1207</issn><issn>2053-9150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1922</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLAzEUhYMoWKtbF67mD0y9mbyXUqxaBcUX4iakaQZT26Ym09b6652xUhDR1eVy7jnnfggdYuhgUPI4ppnpYFUUHQCgW6hVACO5wgy2UQsUgxwXIHbRXkojAMYwly2E719cVi1DPvQTN00-TM04S-OwzCahqrcslNnCJxvmKSvHcz9M-2inNOPkDr5nGz30Tu-75_nV9dlF9-QqtxTzKjecCKKoBAuWDgWRjAlLhJGl5JRyPpASBLF0YIBzOiiNwq6wZsBoYR0DSdqos861MaQUXaln0U9MXGkMugHWDbBugHUDXBve1oYYVvVjwXpXrfQozGPNlPTt3c0JVsAWGMALYLruwCAwp1J_-NlXWqPX2aB9SnOnm6ufJb87yX-df356tHaNUhXihksRxXkt5mvRp8q9b0QTXzUXRDD9KKnuP_dJ76l41pfkE_IJlgM</recordid><startdate>19220102</startdate><enddate>19220102</enddate><creator>Bairstow, Leonard</creator><creator>Cave, B. M.</creator><creator>Lang, E. D.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19220102</creationdate><title>The two-dimensional slow motion of viscous fluids</title><author>Bairstow, Leonard ; Cave, B. M. ; Lang, E. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-a63739480c0c4d738557c37a8f864466b88073c4ba0664bfa91e2cab542ce5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1922</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Cylinders</topic><topic>Differential equations</topic><topic>Infinity</topic><topic>Log integral function</topic><topic>Mathematical expressions</topic><topic>Sine function</topic><topic>Stream functions</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Bairstow, Leonard</creatorcontrib><creatorcontrib>Cave, B. M.</creatorcontrib><creatorcontrib>Lang, E. D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bairstow, Leonard</au><au>Cave, B. M.</au><au>Lang, E. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The two-dimensional slow motion of viscous fluids</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1922-01-02</date><risdate>1922</risdate><volume>100</volume><issue>705</issue><spage>394</spage><epage>413</epage><pages>394-413</pages><issn>0950-1207</issn><eissn>2053-9150</eissn><abstract>The present paper is a contribution to the treatment of problems which require a solution of the differential equation▽4ψ = 0. Amongst such problems are to be found not only the very slow motions of a viscous fluid in two dimensions, but also the flexure of thin flat plates. The prosecution of the investigation has been made possible by the support of the Department of Scientific and Industrial Research, which has provided financial assistance to enable two of us to devote the whole of our time to the research, and our thanks are offered to the Department for its assistance. We also desire to acknowledge the facilities afforded by the Governing Body of the Imperial College of Science and Technology in placing a room at our disposal in the Department of Aeronautics.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1922.0004</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1207 |
ispartof | Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 1922-01, Vol.100 (705), p.394-413 |
issn | 0950-1207 2053-9150 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rspa_1922_0004 |
source | Alma/SFX Local Collection; JSTOR Mathematics & Statistics Collection |
subjects | Approximation Boundary conditions Cylinders Differential equations Infinity Log integral function Mathematical expressions Sine function Stream functions Viscosity |
title | The two-dimensional slow motion of viscous fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20two-dimensional%20slow%20motion%20of%20viscous%20fluids&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Containing%20papers%20of%20a%20mathematical%20and%20physical%20character&rft.au=Bairstow,%20Leonard&rft.date=1922-01-02&rft.volume=100&rft.issue=705&rft.spage=394&rft.epage=413&rft.pages=394-413&rft.issn=0950-1207&rft.eissn=2053-9150&rft_id=info:doi/10.1098/rspa.1922.0004&rft_dat=%3Cjstor_cross%3E93966%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=93966&rfr_iscdi=true |