The two-dimensional slow motion of viscous fluids

The present paper is a contribution to the treatment of problems which require a solution of the differential equation▽4ψ = 0. Amongst such problems are to be found not only the very slow motions of a viscous fluid in two dimensions, but also the flexure of thin flat plates. The prosecution of the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character Containing papers of a mathematical and physical character, 1922-01, Vol.100 (705), p.394-413
Hauptverfasser: Bairstow, Leonard, Cave, B. M., Lang, E. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 413
container_issue 705
container_start_page 394
container_title Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character
container_volume 100
creator Bairstow, Leonard
Cave, B. M.
Lang, E. D.
description The present paper is a contribution to the treatment of problems which require a solution of the differential equation▽4ψ = 0. Amongst such problems are to be found not only the very slow motions of a viscous fluid in two dimensions, but also the flexure of thin flat plates. The prosecution of the investigation has been made possible by the support of the Department of Scientific and Industrial Research, which has provided financial assistance to enable two of us to devote the whole of our time to the research, and our thanks are offered to the Department for its assistance. We also desire to acknowledge the facilities afforded by the Governing Body of the Imperial College of Science and Technology in placing a room at our disposal in the Department of Aeronautics.
doi_str_mv 10.1098/rspa.1922.0004
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_1922_0004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>93966</jstor_id><sourcerecordid>93966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-a63739480c0c4d738557c37a8f864466b88073c4ba0664bfa91e2cab542ce5083</originalsourceid><addsrcrecordid>eNp9j0tLAzEUhYMoWKtbF67mD0y9mbyXUqxaBcUX4iakaQZT26Ym09b6652xUhDR1eVy7jnnfggdYuhgUPI4ppnpYFUUHQCgW6hVACO5wgy2UQsUgxwXIHbRXkojAMYwly2E719cVi1DPvQTN00-TM04S-OwzCahqrcslNnCJxvmKSvHcz9M-2inNOPkDr5nGz30Tu-75_nV9dlF9-QqtxTzKjecCKKoBAuWDgWRjAlLhJGl5JRyPpASBLF0YIBzOiiNwq6wZsBoYR0DSdqos861MaQUXaln0U9MXGkMugHWDbBugHUDXBve1oYYVvVjwXpXrfQozGPNlPTt3c0JVsAWGMALYLruwCAwp1J_-NlXWqPX2aB9SnOnm6ufJb87yX-df356tHaNUhXihksRxXkt5mvRp8q9b0QTXzUXRDD9KKnuP_dJ76l41pfkE_IJlgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The two-dimensional slow motion of viscous fluids</title><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics Collection</source><creator>Bairstow, Leonard ; Cave, B. M. ; Lang, E. D.</creator><creatorcontrib>Bairstow, Leonard ; Cave, B. M. ; Lang, E. D.</creatorcontrib><description>The present paper is a contribution to the treatment of problems which require a solution of the differential equation▽4ψ = 0. Amongst such problems are to be found not only the very slow motions of a viscous fluid in two dimensions, but also the flexure of thin flat plates. The prosecution of the investigation has been made possible by the support of the Department of Scientific and Industrial Research, which has provided financial assistance to enable two of us to devote the whole of our time to the research, and our thanks are offered to the Department for its assistance. We also desire to acknowledge the facilities afforded by the Governing Body of the Imperial College of Science and Technology in placing a room at our disposal in the Department of Aeronautics.</description><identifier>ISSN: 0950-1207</identifier><identifier>EISSN: 2053-9150</identifier><identifier>DOI: 10.1098/rspa.1922.0004</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Approximation ; Boundary conditions ; Cylinders ; Differential equations ; Infinity ; Log integral function ; Mathematical expressions ; Sine function ; Stream functions ; Viscosity</subject><ispartof>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 1922-01, Vol.100 (705), p.394-413</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-a63739480c0c4d738557c37a8f864466b88073c4ba0664bfa91e2cab542ce5083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/93966$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/93966$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27901,27902,57996,58229</link.rule.ids></links><search><creatorcontrib>Bairstow, Leonard</creatorcontrib><creatorcontrib>Cave, B. M.</creatorcontrib><creatorcontrib>Lang, E. D.</creatorcontrib><title>The two-dimensional slow motion of viscous fluids</title><title>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>The present paper is a contribution to the treatment of problems which require a solution of the differential equation▽4ψ = 0. Amongst such problems are to be found not only the very slow motions of a viscous fluid in two dimensions, but also the flexure of thin flat plates. The prosecution of the investigation has been made possible by the support of the Department of Scientific and Industrial Research, which has provided financial assistance to enable two of us to devote the whole of our time to the research, and our thanks are offered to the Department for its assistance. We also desire to acknowledge the facilities afforded by the Governing Body of the Imperial College of Science and Technology in placing a room at our disposal in the Department of Aeronautics.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Cylinders</subject><subject>Differential equations</subject><subject>Infinity</subject><subject>Log integral function</subject><subject>Mathematical expressions</subject><subject>Sine function</subject><subject>Stream functions</subject><subject>Viscosity</subject><issn>0950-1207</issn><issn>2053-9150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1922</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLAzEUhYMoWKtbF67mD0y9mbyXUqxaBcUX4iakaQZT26Ym09b6652xUhDR1eVy7jnnfggdYuhgUPI4ppnpYFUUHQCgW6hVACO5wgy2UQsUgxwXIHbRXkojAMYwly2E719cVi1DPvQTN00-TM04S-OwzCahqrcslNnCJxvmKSvHcz9M-2inNOPkDr5nGz30Tu-75_nV9dlF9-QqtxTzKjecCKKoBAuWDgWRjAlLhJGl5JRyPpASBLF0YIBzOiiNwq6wZsBoYR0DSdqos861MaQUXaln0U9MXGkMugHWDbBugHUDXBve1oYYVvVjwXpXrfQozGPNlPTt3c0JVsAWGMALYLruwCAwp1J_-NlXWqPX2aB9SnOnm6ufJb87yX-df356tHaNUhXihksRxXkt5mvRp8q9b0QTXzUXRDD9KKnuP_dJ76l41pfkE_IJlgM</recordid><startdate>19220102</startdate><enddate>19220102</enddate><creator>Bairstow, Leonard</creator><creator>Cave, B. M.</creator><creator>Lang, E. D.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19220102</creationdate><title>The two-dimensional slow motion of viscous fluids</title><author>Bairstow, Leonard ; Cave, B. M. ; Lang, E. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-a63739480c0c4d738557c37a8f864466b88073c4ba0664bfa91e2cab542ce5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1922</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Cylinders</topic><topic>Differential equations</topic><topic>Infinity</topic><topic>Log integral function</topic><topic>Mathematical expressions</topic><topic>Sine function</topic><topic>Stream functions</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Bairstow, Leonard</creatorcontrib><creatorcontrib>Cave, B. M.</creatorcontrib><creatorcontrib>Lang, E. D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bairstow, Leonard</au><au>Cave, B. M.</au><au>Lang, E. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The two-dimensional slow motion of viscous fluids</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1922-01-02</date><risdate>1922</risdate><volume>100</volume><issue>705</issue><spage>394</spage><epage>413</epage><pages>394-413</pages><issn>0950-1207</issn><eissn>2053-9150</eissn><abstract>The present paper is a contribution to the treatment of problems which require a solution of the differential equation▽4ψ = 0. Amongst such problems are to be found not only the very slow motions of a viscous fluid in two dimensions, but also the flexure of thin flat plates. The prosecution of the investigation has been made possible by the support of the Department of Scientific and Industrial Research, which has provided financial assistance to enable two of us to devote the whole of our time to the research, and our thanks are offered to the Department for its assistance. We also desire to acknowledge the facilities afforded by the Governing Body of the Imperial College of Science and Technology in placing a room at our disposal in the Department of Aeronautics.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1922.0004</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-1207
ispartof Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 1922-01, Vol.100 (705), p.394-413
issn 0950-1207
2053-9150
language eng
recordid cdi_crossref_primary_10_1098_rspa_1922_0004
source Alma/SFX Local Collection; JSTOR Mathematics & Statistics Collection
subjects Approximation
Boundary conditions
Cylinders
Differential equations
Infinity
Log integral function
Mathematical expressions
Sine function
Stream functions
Viscosity
title The two-dimensional slow motion of viscous fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20two-dimensional%20slow%20motion%20of%20viscous%20fluids&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Containing%20papers%20of%20a%20mathematical%20and%20physical%20character&rft.au=Bairstow,%20Leonard&rft.date=1922-01-02&rft.volume=100&rft.issue=705&rft.spage=394&rft.epage=413&rft.pages=394-413&rft.issn=0950-1207&rft.eissn=2053-9150&rft_id=info:doi/10.1098/rspa.1922.0004&rft_dat=%3Cjstor_cross%3E93966%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=93966&rfr_iscdi=true