An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor

DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society open science 2017-03, Vol.4 (3), p.160767-160767
Hauptverfasser: Dunn, K. E., Leake, M. C., Wollman, A. J. M., Trefzer, M. A., Johnson, S., Tyrrell, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160767
container_issue 3
container_start_page 160767
container_title Royal Society open science
container_volume 4
creator Dunn, K. E.
Leake, M. C.
Wollman, A. J. M.
Trefzer, M. A.
Johnson, S.
Tyrrell, A. M.
description DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.
doi_str_mv 10.1098/rsos.160767
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsos_160767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_96887ffc1e274e91824d6e820a4be15e</doaj_id><sourcerecordid>1887420930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-d4753009e1bc874239cea53fbf866fdd75a10fef6e88bfcede3008e8aa6a193b3</originalsourceid><addsrcrecordid>eNptkc1r3DAQxUVpaEKSU-9Fx0LZVLIsW74UlqQfgZBc2mvFWB5lvdjSVpJD_d9XrtOQQE-SZh4_vZlHyFvOLjhr1McQfbzgFaur-hU5KZgsN7Jm4vWz-zE5j3HPGOOSiax7Q44LVTIpKnFCfm4dxd8HDP2ILsFAY5q6mXpL0w7pYUqQ-gekI5oduD6OSwdonF1up95QmJJ3fvRTpMEnCDO9ut1SB0st-XBGjiwMEc8fz1Py48vn75ffNjd3X68vtzcbkx2lTVfWUjDWIG-NqstCNAZBCttaVVW262oJnFm0FSrVWoMdZrVCBVABb0QrTsn1yu087PUhT5OtaA-9_lvw4V5DyH4H1E2lVG2t4VjUJTZcFWWXuQWDskUuMbM-razD1I7YmbyXAMML6MuO63f63j9oKZTInAx4_wgI_teEMemxjwaHARzmRWmulhlZIxbph1Vqgo8xoH36hjO9BKyXgPUacFa_e-7sSfsvzixgqyD4Oa_bmx7TrPd-Ci4__8v8A5QqtNE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887420930</pqid></control><display><type>article</type><title>An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Royal Society Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Dunn, K. E. ; Leake, M. C. ; Wollman, A. J. M. ; Trefzer, M. A. ; Johnson, S. ; Tyrrell, A. M.</creator><creatorcontrib>Dunn, K. E. ; Leake, M. C. ; Wollman, A. J. M. ; Trefzer, M. A. ; Johnson, S. ; Tyrrell, A. M.</creatorcontrib><description>DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.</description><identifier>ISSN: 2054-5703</identifier><identifier>EISSN: 2054-5703</identifier><identifier>DOI: 10.1098/rsos.160767</identifier><identifier>PMID: 28405363</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Biochemistry And Biophysics ; Dna Nanotechnology ; Molecular Machine ; Rotary Motor ; Strand Displacement</subject><ispartof>Royal Society open science, 2017-03, Vol.4 (3), p.160767-160767</ispartof><rights>2017 The Authors.</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-d4753009e1bc874239cea53fbf866fdd75a10fef6e88bfcede3008e8aa6a193b3</cites><orcidid>0000-0002-5068-4354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383820/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383820/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,3311,27134,27911,27912,53778,53780,55542,55552</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28405363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunn, K. E.</creatorcontrib><creatorcontrib>Leake, M. C.</creatorcontrib><creatorcontrib>Wollman, A. J. M.</creatorcontrib><creatorcontrib>Trefzer, M. A.</creatorcontrib><creatorcontrib>Johnson, S.</creatorcontrib><creatorcontrib>Tyrrell, A. M.</creatorcontrib><title>An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor</title><title>Royal Society open science</title><addtitle>R. Soc. open sci</addtitle><addtitle>R Soc Open Sci</addtitle><description>DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.</description><subject>Biochemistry And Biophysics</subject><subject>Dna Nanotechnology</subject><subject>Molecular Machine</subject><subject>Rotary Motor</subject><subject>Strand Displacement</subject><issn>2054-5703</issn><issn>2054-5703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkc1r3DAQxUVpaEKSU-9Fx0LZVLIsW74UlqQfgZBc2mvFWB5lvdjSVpJD_d9XrtOQQE-SZh4_vZlHyFvOLjhr1McQfbzgFaur-hU5KZgsN7Jm4vWz-zE5j3HPGOOSiax7Q44LVTIpKnFCfm4dxd8HDP2ILsFAY5q6mXpL0w7pYUqQ-gekI5oduD6OSwdonF1up95QmJJ3fvRTpMEnCDO9ut1SB0st-XBGjiwMEc8fz1Py48vn75ffNjd3X68vtzcbkx2lTVfWUjDWIG-NqstCNAZBCttaVVW262oJnFm0FSrVWoMdZrVCBVABb0QrTsn1yu087PUhT5OtaA-9_lvw4V5DyH4H1E2lVG2t4VjUJTZcFWWXuQWDskUuMbM-razD1I7YmbyXAMML6MuO63f63j9oKZTInAx4_wgI_teEMemxjwaHARzmRWmulhlZIxbph1Vqgo8xoH36hjO9BKyXgPUacFa_e-7sSfsvzixgqyD4Oa_bmx7TrPd-Ci4__8v8A5QqtNE</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Dunn, K. E.</creator><creator>Leake, M. C.</creator><creator>Wollman, A. J. M.</creator><creator>Trefzer, M. A.</creator><creator>Johnson, S.</creator><creator>Tyrrell, A. M.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5068-4354</orcidid></search><sort><creationdate>20170301</creationdate><title>An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor</title><author>Dunn, K. E. ; Leake, M. C. ; Wollman, A. J. M. ; Trefzer, M. A. ; Johnson, S. ; Tyrrell, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-d4753009e1bc874239cea53fbf866fdd75a10fef6e88bfcede3008e8aa6a193b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry And Biophysics</topic><topic>Dna Nanotechnology</topic><topic>Molecular Machine</topic><topic>Rotary Motor</topic><topic>Strand Displacement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunn, K. E.</creatorcontrib><creatorcontrib>Leake, M. C.</creatorcontrib><creatorcontrib>Wollman, A. J. M.</creatorcontrib><creatorcontrib>Trefzer, M. A.</creatorcontrib><creatorcontrib>Johnson, S.</creatorcontrib><creatorcontrib>Tyrrell, A. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Royal Society open science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunn, K. E.</au><au>Leake, M. C.</au><au>Wollman, A. J. M.</au><au>Trefzer, M. A.</au><au>Johnson, S.</au><au>Tyrrell, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor</atitle><jtitle>Royal Society open science</jtitle><stitle>R. Soc. open sci</stitle><addtitle>R Soc Open Sci</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>4</volume><issue>3</issue><spage>160767</spage><epage>160767</epage><pages>160767-160767</pages><issn>2054-5703</issn><eissn>2054-5703</eissn><abstract>DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>28405363</pmid><doi>10.1098/rsos.160767</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5068-4354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2054-5703
ispartof Royal Society open science, 2017-03, Vol.4 (3), p.160767-160767
issn 2054-5703
2054-5703
language eng
recordid cdi_crossref_primary_10_1098_rsos_160767
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Royal Society Open Access Journals; PubMed Central Open Access; PubMed Central
subjects Biochemistry And Biophysics
Dna Nanotechnology
Molecular Machine
Rotary Motor
Strand Displacement
title An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20study%20of%20the%20putative%20mechanism%20of%20a%20synthetic%20autonomous%20rotary%20DNA%20nanomotor&rft.jtitle=Royal%20Society%20open%20science&rft.au=Dunn,%20K.%20E.&rft.date=2017-03-01&rft.volume=4&rft.issue=3&rft.spage=160767&rft.epage=160767&rft.pages=160767-160767&rft.issn=2054-5703&rft.eissn=2054-5703&rft_id=info:doi/10.1098/rsos.160767&rft_dat=%3Cproquest_cross%3E1887420930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887420930&rft_id=info:pmid/28405363&rft_doaj_id=oai_doaj_org_article_96887ffc1e274e91824d6e820a4be15e&rfr_iscdi=true