An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor
DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial f...
Gespeichert in:
Veröffentlicht in: | Royal Society open science 2017-03, Vol.4 (3), p.160767-160767 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160767 |
---|---|
container_issue | 3 |
container_start_page | 160767 |
container_title | Royal Society open science |
container_volume | 4 |
creator | Dunn, K. E. Leake, M. C. Wollman, A. J. M. Trefzer, M. A. Johnson, S. Tyrrell, A. M. |
description | DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics. |
doi_str_mv | 10.1098/rsos.160767 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsos_160767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_96887ffc1e274e91824d6e820a4be15e</doaj_id><sourcerecordid>1887420930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-d4753009e1bc874239cea53fbf866fdd75a10fef6e88bfcede3008e8aa6a193b3</originalsourceid><addsrcrecordid>eNptkc1r3DAQxUVpaEKSU-9Fx0LZVLIsW74UlqQfgZBc2mvFWB5lvdjSVpJD_d9XrtOQQE-SZh4_vZlHyFvOLjhr1McQfbzgFaur-hU5KZgsN7Jm4vWz-zE5j3HPGOOSiax7Q44LVTIpKnFCfm4dxd8HDP2ILsFAY5q6mXpL0w7pYUqQ-gekI5oduD6OSwdonF1up95QmJJ3fvRTpMEnCDO9ut1SB0st-XBGjiwMEc8fz1Py48vn75ffNjd3X68vtzcbkx2lTVfWUjDWIG-NqstCNAZBCttaVVW262oJnFm0FSrVWoMdZrVCBVABb0QrTsn1yu087PUhT5OtaA-9_lvw4V5DyH4H1E2lVG2t4VjUJTZcFWWXuQWDskUuMbM-razD1I7YmbyXAMML6MuO63f63j9oKZTInAx4_wgI_teEMemxjwaHARzmRWmulhlZIxbph1Vqgo8xoH36hjO9BKyXgPUacFa_e-7sSfsvzixgqyD4Oa_bmx7TrPd-Ci4__8v8A5QqtNE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887420930</pqid></control><display><type>article</type><title>An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Royal Society Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Dunn, K. E. ; Leake, M. C. ; Wollman, A. J. M. ; Trefzer, M. A. ; Johnson, S. ; Tyrrell, A. M.</creator><creatorcontrib>Dunn, K. E. ; Leake, M. C. ; Wollman, A. J. M. ; Trefzer, M. A. ; Johnson, S. ; Tyrrell, A. M.</creatorcontrib><description>DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.</description><identifier>ISSN: 2054-5703</identifier><identifier>EISSN: 2054-5703</identifier><identifier>DOI: 10.1098/rsos.160767</identifier><identifier>PMID: 28405363</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Biochemistry And Biophysics ; Dna Nanotechnology ; Molecular Machine ; Rotary Motor ; Strand Displacement</subject><ispartof>Royal Society open science, 2017-03, Vol.4 (3), p.160767-160767</ispartof><rights>2017 The Authors.</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-d4753009e1bc874239cea53fbf866fdd75a10fef6e88bfcede3008e8aa6a193b3</cites><orcidid>0000-0002-5068-4354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383820/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383820/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,3311,27134,27911,27912,53778,53780,55542,55552</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28405363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunn, K. E.</creatorcontrib><creatorcontrib>Leake, M. C.</creatorcontrib><creatorcontrib>Wollman, A. J. M.</creatorcontrib><creatorcontrib>Trefzer, M. A.</creatorcontrib><creatorcontrib>Johnson, S.</creatorcontrib><creatorcontrib>Tyrrell, A. M.</creatorcontrib><title>An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor</title><title>Royal Society open science</title><addtitle>R. Soc. open sci</addtitle><addtitle>R Soc Open Sci</addtitle><description>DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.</description><subject>Biochemistry And Biophysics</subject><subject>Dna Nanotechnology</subject><subject>Molecular Machine</subject><subject>Rotary Motor</subject><subject>Strand Displacement</subject><issn>2054-5703</issn><issn>2054-5703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkc1r3DAQxUVpaEKSU-9Fx0LZVLIsW74UlqQfgZBc2mvFWB5lvdjSVpJD_d9XrtOQQE-SZh4_vZlHyFvOLjhr1McQfbzgFaur-hU5KZgsN7Jm4vWz-zE5j3HPGOOSiax7Q44LVTIpKnFCfm4dxd8HDP2ILsFAY5q6mXpL0w7pYUqQ-gekI5oduD6OSwdonF1up95QmJJ3fvRTpMEnCDO9ut1SB0st-XBGjiwMEc8fz1Py48vn75ffNjd3X68vtzcbkx2lTVfWUjDWIG-NqstCNAZBCttaVVW262oJnFm0FSrVWoMdZrVCBVABb0QrTsn1yu087PUhT5OtaA-9_lvw4V5DyH4H1E2lVG2t4VjUJTZcFWWXuQWDskUuMbM-razD1I7YmbyXAMML6MuO63f63j9oKZTInAx4_wgI_teEMemxjwaHARzmRWmulhlZIxbph1Vqgo8xoH36hjO9BKyXgPUacFa_e-7sSfsvzixgqyD4Oa_bmx7TrPd-Ci4__8v8A5QqtNE</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Dunn, K. E.</creator><creator>Leake, M. C.</creator><creator>Wollman, A. J. M.</creator><creator>Trefzer, M. A.</creator><creator>Johnson, S.</creator><creator>Tyrrell, A. M.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5068-4354</orcidid></search><sort><creationdate>20170301</creationdate><title>An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor</title><author>Dunn, K. E. ; Leake, M. C. ; Wollman, A. J. M. ; Trefzer, M. A. ; Johnson, S. ; Tyrrell, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-d4753009e1bc874239cea53fbf866fdd75a10fef6e88bfcede3008e8aa6a193b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry And Biophysics</topic><topic>Dna Nanotechnology</topic><topic>Molecular Machine</topic><topic>Rotary Motor</topic><topic>Strand Displacement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunn, K. E.</creatorcontrib><creatorcontrib>Leake, M. C.</creatorcontrib><creatorcontrib>Wollman, A. J. M.</creatorcontrib><creatorcontrib>Trefzer, M. A.</creatorcontrib><creatorcontrib>Johnson, S.</creatorcontrib><creatorcontrib>Tyrrell, A. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Royal Society open science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunn, K. E.</au><au>Leake, M. C.</au><au>Wollman, A. J. M.</au><au>Trefzer, M. A.</au><au>Johnson, S.</au><au>Tyrrell, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor</atitle><jtitle>Royal Society open science</jtitle><stitle>R. Soc. open sci</stitle><addtitle>R Soc Open Sci</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>4</volume><issue>3</issue><spage>160767</spage><epage>160767</epage><pages>160767-160767</pages><issn>2054-5703</issn><eissn>2054-5703</eissn><abstract>DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>28405363</pmid><doi>10.1098/rsos.160767</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5068-4354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2054-5703 |
ispartof | Royal Society open science, 2017-03, Vol.4 (3), p.160767-160767 |
issn | 2054-5703 2054-5703 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rsos_160767 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Royal Society Open Access Journals; PubMed Central Open Access; PubMed Central |
subjects | Biochemistry And Biophysics Dna Nanotechnology Molecular Machine Rotary Motor Strand Displacement |
title | An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20study%20of%20the%20putative%20mechanism%20of%20a%20synthetic%20autonomous%20rotary%20DNA%20nanomotor&rft.jtitle=Royal%20Society%20open%20science&rft.au=Dunn,%20K.%20E.&rft.date=2017-03-01&rft.volume=4&rft.issue=3&rft.spage=160767&rft.epage=160767&rft.pages=160767-160767&rft.issn=2054-5703&rft.eissn=2054-5703&rft_id=info:doi/10.1098/rsos.160767&rft_dat=%3Cproquest_cross%3E1887420930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887420930&rft_id=info:pmid/28405363&rft_doaj_id=oai_doaj_org_article_96887ffc1e274e91824d6e820a4be15e&rfr_iscdi=true |