Model-driven therapeutic treatment of neurological disorders: reshaping brain rhythms with neuromodulation
Electric stimulation has been investigated for several decades to treat, with various degrees of success, a broad spectrum of neurological disorders. Historically, the development of these methods has been largely empirical but has led to a remarkably efficient, yet invasive treatment: deep brain st...
Gespeichert in:
Veröffentlicht in: | Interface focus 2011-02, Vol.1 (1), p.61-74 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | Interface focus |
container_volume | 1 |
creator | Modolo, Julien Legros, Alexandre Thomas, Alex W. Beuter, Anne |
description | Electric stimulation has been investigated for several decades to treat, with various degrees of success, a broad spectrum of neurological disorders. Historically, the development of these methods has been largely empirical but has led to a remarkably efficient, yet invasive treatment: deep brain stimulation (DBS). However, the efficiency of DBS is limited by our lack of understanding of the underlying physiological mechanisms and by the complex relationship existing between brain processing and behaviour. Biophysical modelling of brain activity, describing multi-scale spatio-temporal patterns of neuronal activity using a mathematical model and taking into account the physical properties of brain tissue, represents one way to fill this gap. In this review, we illustrate how biophysical modelling is beginning to emerge as a driving force orienting the development of innovative brain stimulation methods that may move DBS forward. We present examples of modelling works that have provided fruitful insights in regards to DBS underlying mechanisms, and others that also suggest potential improvements for this neurosurgical procedure. The reviewed literature emphasizes that biophysical modelling is a valuable tool to assist a rational development of electrical and/or magnetic brain stimulation methods tailored to both the disease and the patient's characteristics. |
doi_str_mv | 10.1098/rsfs.2010.0509 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsfs_2010_0509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928905889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-d1f412a7b5996bf3911257238e929a798d8fad6a2be62202972b01d0b265dc203</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIVqVXjig3xCGLPfmyOSBVFaVIi5AonC0nnmy8SuxgO1stvx5HaSsKAl_GY795b2ZekrykZEMJZ2-d7_wGSExJSfiT5BRIARnjhD69vzPOTpJz7_cknqKijMDz5ASgoJzXxWmy_2wVDply-oAmDT06OeEcdJsGhzKMaEJqu9Tg7Oxgd7qVQ6q0t06h8-9Sh76Xkza7tHFSm9T1x9CPPr3VoV-LRqvmQQZtzYvkWScHj-d38Sz5fvXh2-V1tv3y8dPlxTZry7IOmaJdQUHWTcl51XQ5pxTKGnKGHLisOVOsk6qS0GAFQIDX0BCqSANVqVog-VnyfuWd5mZE1cYRnBzE5PQo3VFYqcXjH6N7sbMHkUO1LCYSvFkJ-j_Kri-2YnkjeUkog-qwYF_fiTn7Y0YfxKh9i8MgDdrZCw7RjjLaEJGbFdk6673D7oGaErHYKRY7xWKnWOyMBa9-n-MBfm9eBMgV4OwxLtS2GsNR7O3sTEzF15urmwPVVBCWU1JCkYP4qadVhgrt_YwxPlb9u4n8fxr_aP0XjrrQMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928905889</pqid></control><display><type>article</type><title>Model-driven therapeutic treatment of neurological disorders: reshaping brain rhythms with neuromodulation</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Modolo, Julien ; Legros, Alexandre ; Thomas, Alex W. ; Beuter, Anne</creator><creatorcontrib>Modolo, Julien ; Legros, Alexandre ; Thomas, Alex W. ; Beuter, Anne</creatorcontrib><description>Electric stimulation has been investigated for several decades to treat, with various degrees of success, a broad spectrum of neurological disorders. Historically, the development of these methods has been largely empirical but has led to a remarkably efficient, yet invasive treatment: deep brain stimulation (DBS). However, the efficiency of DBS is limited by our lack of understanding of the underlying physiological mechanisms and by the complex relationship existing between brain processing and behaviour. Biophysical modelling of brain activity, describing multi-scale spatio-temporal patterns of neuronal activity using a mathematical model and taking into account the physical properties of brain tissue, represents one way to fill this gap. In this review, we illustrate how biophysical modelling is beginning to emerge as a driving force orienting the development of innovative brain stimulation methods that may move DBS forward. We present examples of modelling works that have provided fruitful insights in regards to DBS underlying mechanisms, and others that also suggest potential improvements for this neurosurgical procedure. The reviewed literature emphasizes that biophysical modelling is a valuable tool to assist a rational development of electrical and/or magnetic brain stimulation methods tailored to both the disease and the patient's characteristics.</description><identifier>ISSN: 2042-8898</identifier><identifier>EISSN: 2042-8901</identifier><identifier>DOI: 10.1098/rsfs.2010.0509</identifier><identifier>PMID: 22419974</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Biochemistry, Molecular Biology ; Biophysical Modelling ; Biophysics ; Brain Rhythms ; Brain Stimulation ; Cognitive science ; Electric And Magnetic Stimulation ; Life Sciences ; Neuromodulation ; Neurons and Cognition ; Neuroscience</subject><ispartof>Interface focus, 2011-02, Vol.1 (1), p.61-74</ispartof><rights>This Journal is © 2010 The Royal Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>This Journal is © 2010 The Royal Society 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-d1f412a7b5996bf3911257238e929a798d8fad6a2be62202972b01d0b265dc203</citedby><cites>FETCH-LOGICAL-c557t-d1f412a7b5996bf3911257238e929a798d8fad6a2be62202972b01d0b265dc203</cites><orcidid>0000-0002-5973-7571 ; 0000-0003-2532-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262241/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262241/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22419974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03501826$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Modolo, Julien</creatorcontrib><creatorcontrib>Legros, Alexandre</creatorcontrib><creatorcontrib>Thomas, Alex W.</creatorcontrib><creatorcontrib>Beuter, Anne</creatorcontrib><title>Model-driven therapeutic treatment of neurological disorders: reshaping brain rhythms with neuromodulation</title><title>Interface focus</title><addtitle>Interface Focus</addtitle><addtitle>Interface Focus</addtitle><description>Electric stimulation has been investigated for several decades to treat, with various degrees of success, a broad spectrum of neurological disorders. Historically, the development of these methods has been largely empirical but has led to a remarkably efficient, yet invasive treatment: deep brain stimulation (DBS). However, the efficiency of DBS is limited by our lack of understanding of the underlying physiological mechanisms and by the complex relationship existing between brain processing and behaviour. Biophysical modelling of brain activity, describing multi-scale spatio-temporal patterns of neuronal activity using a mathematical model and taking into account the physical properties of brain tissue, represents one way to fill this gap. In this review, we illustrate how biophysical modelling is beginning to emerge as a driving force orienting the development of innovative brain stimulation methods that may move DBS forward. We present examples of modelling works that have provided fruitful insights in regards to DBS underlying mechanisms, and others that also suggest potential improvements for this neurosurgical procedure. The reviewed literature emphasizes that biophysical modelling is a valuable tool to assist a rational development of electrical and/or magnetic brain stimulation methods tailored to both the disease and the patient's characteristics.</description><subject>Biochemistry, Molecular Biology</subject><subject>Biophysical Modelling</subject><subject>Biophysics</subject><subject>Brain Rhythms</subject><subject>Brain Stimulation</subject><subject>Cognitive science</subject><subject>Electric And Magnetic Stimulation</subject><subject>Life Sciences</subject><subject>Neuromodulation</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><issn>2042-8898</issn><issn>2042-8901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQjRCIVqVXjig3xCGLPfmyOSBVFaVIi5AonC0nnmy8SuxgO1stvx5HaSsKAl_GY795b2ZekrykZEMJZ2-d7_wGSExJSfiT5BRIARnjhD69vzPOTpJz7_cknqKijMDz5ASgoJzXxWmy_2wVDply-oAmDT06OeEcdJsGhzKMaEJqu9Tg7Oxgd7qVQ6q0t06h8-9Sh76Xkza7tHFSm9T1x9CPPr3VoV-LRqvmQQZtzYvkWScHj-d38Sz5fvXh2-V1tv3y8dPlxTZry7IOmaJdQUHWTcl51XQ5pxTKGnKGHLisOVOsk6qS0GAFQIDX0BCqSANVqVog-VnyfuWd5mZE1cYRnBzE5PQo3VFYqcXjH6N7sbMHkUO1LCYSvFkJ-j_Kri-2YnkjeUkog-qwYF_fiTn7Y0YfxKh9i8MgDdrZCw7RjjLaEJGbFdk6673D7oGaErHYKRY7xWKnWOyMBa9-n-MBfm9eBMgV4OwxLtS2GsNR7O3sTEzF15urmwPVVBCWU1JCkYP4qadVhgrt_YwxPlb9u4n8fxr_aP0XjrrQMg</recordid><startdate>20110206</startdate><enddate>20110206</enddate><creator>Modolo, Julien</creator><creator>Legros, Alexandre</creator><creator>Thomas, Alex W.</creator><creator>Beuter, Anne</creator><general>The Royal Society</general><general>Royal Society publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5973-7571</orcidid><orcidid>https://orcid.org/0000-0003-2532-6624</orcidid></search><sort><creationdate>20110206</creationdate><title>Model-driven therapeutic treatment of neurological disorders: reshaping brain rhythms with neuromodulation</title><author>Modolo, Julien ; Legros, Alexandre ; Thomas, Alex W. ; Beuter, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-d1f412a7b5996bf3911257238e929a798d8fad6a2be62202972b01d0b265dc203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Biophysical Modelling</topic><topic>Biophysics</topic><topic>Brain Rhythms</topic><topic>Brain Stimulation</topic><topic>Cognitive science</topic><topic>Electric And Magnetic Stimulation</topic><topic>Life Sciences</topic><topic>Neuromodulation</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Modolo, Julien</creatorcontrib><creatorcontrib>Legros, Alexandre</creatorcontrib><creatorcontrib>Thomas, Alex W.</creatorcontrib><creatorcontrib>Beuter, Anne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Interface focus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Modolo, Julien</au><au>Legros, Alexandre</au><au>Thomas, Alex W.</au><au>Beuter, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-driven therapeutic treatment of neurological disorders: reshaping brain rhythms with neuromodulation</atitle><jtitle>Interface focus</jtitle><stitle>Interface Focus</stitle><addtitle>Interface Focus</addtitle><date>2011-02-06</date><risdate>2011</risdate><volume>1</volume><issue>1</issue><spage>61</spage><epage>74</epage><pages>61-74</pages><issn>2042-8898</issn><eissn>2042-8901</eissn><abstract>Electric stimulation has been investigated for several decades to treat, with various degrees of success, a broad spectrum of neurological disorders. Historically, the development of these methods has been largely empirical but has led to a remarkably efficient, yet invasive treatment: deep brain stimulation (DBS). However, the efficiency of DBS is limited by our lack of understanding of the underlying physiological mechanisms and by the complex relationship existing between brain processing and behaviour. Biophysical modelling of brain activity, describing multi-scale spatio-temporal patterns of neuronal activity using a mathematical model and taking into account the physical properties of brain tissue, represents one way to fill this gap. In this review, we illustrate how biophysical modelling is beginning to emerge as a driving force orienting the development of innovative brain stimulation methods that may move DBS forward. We present examples of modelling works that have provided fruitful insights in regards to DBS underlying mechanisms, and others that also suggest potential improvements for this neurosurgical procedure. The reviewed literature emphasizes that biophysical modelling is a valuable tool to assist a rational development of electrical and/or magnetic brain stimulation methods tailored to both the disease and the patient's characteristics.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>22419974</pmid><doi>10.1098/rsfs.2010.0509</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5973-7571</orcidid><orcidid>https://orcid.org/0000-0003-2532-6624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2042-8898 |
ispartof | Interface focus, 2011-02, Vol.1 (1), p.61-74 |
issn | 2042-8898 2042-8901 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rsfs_2010_0509 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biochemistry, Molecular Biology Biophysical Modelling Biophysics Brain Rhythms Brain Stimulation Cognitive science Electric And Magnetic Stimulation Life Sciences Neuromodulation Neurons and Cognition Neuroscience |
title | Model-driven therapeutic treatment of neurological disorders: reshaping brain rhythms with neuromodulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-driven%20therapeutic%20treatment%20of%20neurological%20disorders:%20reshaping%20brain%20rhythms%20with%20neuromodulation&rft.jtitle=Interface%20focus&rft.au=Modolo,%20Julien&rft.date=2011-02-06&rft.volume=1&rft.issue=1&rft.spage=61&rft.epage=74&rft.pages=61-74&rft.issn=2042-8898&rft.eissn=2042-8901&rft_id=info:doi/10.1098/rsfs.2010.0509&rft_dat=%3Cproquest_cross%3E928905889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928905889&rft_id=info:pmid/22419974&rfr_iscdi=true |