Accelerating ophthalmic artificial intelligence research: the role of an open access data repository

PURPOSE OF REVIEWArtificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in ophthalmology 2020-09, Vol.31 (5), p.337-350
Hauptverfasser: Kras, Ashley, Celi, Leo A., Miller, John B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 5
container_start_page 337
container_title Current opinion in ophthalmology
container_volume 31
creator Kras, Ashley
Celi, Leo A.
Miller, John B.
description PURPOSE OF REVIEWArtificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of protocols and checklists will accelerate the translation of research publications to impact on patient care. RECENT FINDINGSBeyond technological scepticism, we lack uniformity in analysing algorithmic performance generalizability, and benchmarking impacts across clinical settings. No regulatory guardrails have been set to minimize bias or optimize interpretability; no consensus clinical acceptability thresholds or systematized postdeployment monitoring has been set. Moreover, stakeholders with misaligned incentives deepen the landscape complexity especially when it comes to the requisite data integration and harmonization to advance the field. Therefore, despite increasing algorithmic accuracy and commoditization, the infamous ‘implementation gap’ persists. Open clinical data repositories have been shown to rapidly accelerate research, minimize redundancies and disseminate the expertise and knowledge required to overcome existing barriers. Drawing upon the longstanding success of existing governance frameworks and robust data use and sharing agreements, the ophthalmic community has tremendous opportunity in ushering artificial intelligence into medicine. By collaboratively building a powerful resource of open, anonymized multimodal ophthalmic data, the next generation of clinicians can advance data-driven eye care in unprecedented ways. SUMMARYThis piece demonstrates that with readily accessible data, immense progress can be achieved clinically and methodologically to realize artificial intelligenceʼs impact on clinical care. Exponentially progressive network effects can be seen by consolidating, curating and distributing data amongst both clinicians and data scientists.
doi_str_mv 10.1097/ICU.0000000000000678
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1097_ICU_0000000000000678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430092970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4988-4560f02234e709ca43a72e61042d71ea345fe2b7f0c43a29eba06eccf43df79c3</originalsourceid><addsrcrecordid>eNqNkEFLHTEUhYMo1Wr_gZQsBRl7J8m8TLqToVZB6EbXQ17mxonmTV6TDOK_b55PRVy0zSa55HzncA8hxzWc1aDkt6vu9gzen4Vsd8hB3fC6ksDq3fIGAVUrebtPPqd0XzQC2uYT2edMCoBGHZDh3Bj0GHV20x0N6zGP2q-coTpmZ51x2lM3ZfTe3eFkkEZMqKMZv9M8lil4pMFSPRUWJ6qLW0p00FkX5Tokl0N8OiJ7VvuEX17uQ3J78eOmu6yuf_286s6vKyNU21aiWYAFxrhACcpowbVkuChbsEHWqLloLLKltGDKF1O41LBAY6zgg5XK8ENysvVdx_B7xpT7lUtlPa8nDHPqmeAAiikJRSq2UhNDShFtv45upeNTX0O_6bcv_fYf-y3Y15eEebnC4Q16LbQI2q3gEZfBJuM2pb3JiksjoVagng07l0vvYerCPOWCnv4_-i4o-IwxPfj5EWM_ovZ5_NcS4i_oJqiRvKkYMHhOqzag5H8AqOK37w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430092970</pqid></control><display><type>article</type><title>Accelerating ophthalmic artificial intelligence research: the role of an open access data repository</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Kras, Ashley ; Celi, Leo A. ; Miller, John B.</creator><creatorcontrib>Kras, Ashley ; Celi, Leo A. ; Miller, John B.</creatorcontrib><description>PURPOSE OF REVIEWArtificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of protocols and checklists will accelerate the translation of research publications to impact on patient care. RECENT FINDINGSBeyond technological scepticism, we lack uniformity in analysing algorithmic performance generalizability, and benchmarking impacts across clinical settings. No regulatory guardrails have been set to minimize bias or optimize interpretability; no consensus clinical acceptability thresholds or systematized postdeployment monitoring has been set. Moreover, stakeholders with misaligned incentives deepen the landscape complexity especially when it comes to the requisite data integration and harmonization to advance the field. Therefore, despite increasing algorithmic accuracy and commoditization, the infamous ‘implementation gap’ persists. Open clinical data repositories have been shown to rapidly accelerate research, minimize redundancies and disseminate the expertise and knowledge required to overcome existing barriers. Drawing upon the longstanding success of existing governance frameworks and robust data use and sharing agreements, the ophthalmic community has tremendous opportunity in ushering artificial intelligence into medicine. By collaboratively building a powerful resource of open, anonymized multimodal ophthalmic data, the next generation of clinicians can advance data-driven eye care in unprecedented ways. SUMMARYThis piece demonstrates that with readily accessible data, immense progress can be achieved clinically and methodologically to realize artificial intelligenceʼs impact on clinical care. Exponentially progressive network effects can be seen by consolidating, curating and distributing data amongst both clinicians and data scientists.</description><identifier>ISSN: 1040-8738</identifier><identifier>EISSN: 1531-7021</identifier><identifier>DOI: 10.1097/ICU.0000000000000678</identifier><identifier>PMID: 32740059</identifier><language>eng</language><publisher>PHILADELPHIA: Wolters Kluwer Health, Inc. All rights reserved</publisher><subject>Access to Information ; Algorithms ; Artificial Intelligence ; Biomedical Research - trends ; Humans ; Life Sciences &amp; Biomedicine ; Ophthalmology ; Ophthalmology - trends ; Science &amp; Technology</subject><ispartof>Current opinion in ophthalmology, 2020-09, Vol.31 (5), p.337-350</ispartof><rights>Wolters Kluwer Health, Inc. All rights reserved.</rights><rights>Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000570190900006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4988-4560f02234e709ca43a72e61042d71ea345fe2b7f0c43a29eba06eccf43df79c3</citedby><cites>FETCH-LOGICAL-c4988-4560f02234e709ca43a72e61042d71ea345fe2b7f0c43a29eba06eccf43df79c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32740059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kras, Ashley</creatorcontrib><creatorcontrib>Celi, Leo A.</creatorcontrib><creatorcontrib>Miller, John B.</creatorcontrib><title>Accelerating ophthalmic artificial intelligence research: the role of an open access data repository</title><title>Current opinion in ophthalmology</title><addtitle>CURR OPIN OPHTHALMOL</addtitle><addtitle>Curr Opin Ophthalmol</addtitle><description>PURPOSE OF REVIEWArtificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of protocols and checklists will accelerate the translation of research publications to impact on patient care. RECENT FINDINGSBeyond technological scepticism, we lack uniformity in analysing algorithmic performance generalizability, and benchmarking impacts across clinical settings. No regulatory guardrails have been set to minimize bias or optimize interpretability; no consensus clinical acceptability thresholds or systematized postdeployment monitoring has been set. Moreover, stakeholders with misaligned incentives deepen the landscape complexity especially when it comes to the requisite data integration and harmonization to advance the field. Therefore, despite increasing algorithmic accuracy and commoditization, the infamous ‘implementation gap’ persists. Open clinical data repositories have been shown to rapidly accelerate research, minimize redundancies and disseminate the expertise and knowledge required to overcome existing barriers. Drawing upon the longstanding success of existing governance frameworks and robust data use and sharing agreements, the ophthalmic community has tremendous opportunity in ushering artificial intelligence into medicine. By collaboratively building a powerful resource of open, anonymized multimodal ophthalmic data, the next generation of clinicians can advance data-driven eye care in unprecedented ways. SUMMARYThis piece demonstrates that with readily accessible data, immense progress can be achieved clinically and methodologically to realize artificial intelligenceʼs impact on clinical care. Exponentially progressive network effects can be seen by consolidating, curating and distributing data amongst both clinicians and data scientists.</description><subject>Access to Information</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biomedical Research - trends</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Ophthalmology</subject><subject>Ophthalmology - trends</subject><subject>Science &amp; Technology</subject><issn>1040-8738</issn><issn>1531-7021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkEFLHTEUhYMo1Wr_gZQsBRl7J8m8TLqToVZB6EbXQ17mxonmTV6TDOK_b55PRVy0zSa55HzncA8hxzWc1aDkt6vu9gzen4Vsd8hB3fC6ksDq3fIGAVUrebtPPqd0XzQC2uYT2edMCoBGHZDh3Bj0GHV20x0N6zGP2q-coTpmZ51x2lM3ZfTe3eFkkEZMqKMZv9M8lil4pMFSPRUWJ6qLW0p00FkX5Tokl0N8OiJ7VvuEX17uQ3J78eOmu6yuf_286s6vKyNU21aiWYAFxrhACcpowbVkuChbsEHWqLloLLKltGDKF1O41LBAY6zgg5XK8ENysvVdx_B7xpT7lUtlPa8nDHPqmeAAiikJRSq2UhNDShFtv45upeNTX0O_6bcv_fYf-y3Y15eEebnC4Q16LbQI2q3gEZfBJuM2pb3JiksjoVagng07l0vvYerCPOWCnv4_-i4o-IwxPfj5EWM_ovZ5_NcS4i_oJqiRvKkYMHhOqzag5H8AqOK37w</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kras, Ashley</creator><creator>Celi, Leo A.</creator><creator>Miller, John B.</creator><general>Wolters Kluwer Health, Inc. All rights reserved</general><general>Copyright Wolters Kluwer Health, Inc. All rights reserved</general><general>Lippincott Williams &amp; Wilkins</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200901</creationdate><title>Accelerating ophthalmic artificial intelligence research: the role of an open access data repository</title><author>Kras, Ashley ; Celi, Leo A. ; Miller, John B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4988-4560f02234e709ca43a72e61042d71ea345fe2b7f0c43a29eba06eccf43df79c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Access to Information</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biomedical Research - trends</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Ophthalmology</topic><topic>Ophthalmology - trends</topic><topic>Science &amp; Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Kras, Ashley</creatorcontrib><creatorcontrib>Celi, Leo A.</creatorcontrib><creatorcontrib>Miller, John B.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in ophthalmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kras, Ashley</au><au>Celi, Leo A.</au><au>Miller, John B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating ophthalmic artificial intelligence research: the role of an open access data repository</atitle><jtitle>Current opinion in ophthalmology</jtitle><stitle>CURR OPIN OPHTHALMOL</stitle><addtitle>Curr Opin Ophthalmol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>31</volume><issue>5</issue><spage>337</spage><epage>350</epage><pages>337-350</pages><issn>1040-8738</issn><eissn>1531-7021</eissn><abstract>PURPOSE OF REVIEWArtificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of protocols and checklists will accelerate the translation of research publications to impact on patient care. RECENT FINDINGSBeyond technological scepticism, we lack uniformity in analysing algorithmic performance generalizability, and benchmarking impacts across clinical settings. No regulatory guardrails have been set to minimize bias or optimize interpretability; no consensus clinical acceptability thresholds or systematized postdeployment monitoring has been set. Moreover, stakeholders with misaligned incentives deepen the landscape complexity especially when it comes to the requisite data integration and harmonization to advance the field. Therefore, despite increasing algorithmic accuracy and commoditization, the infamous ‘implementation gap’ persists. Open clinical data repositories have been shown to rapidly accelerate research, minimize redundancies and disseminate the expertise and knowledge required to overcome existing barriers. Drawing upon the longstanding success of existing governance frameworks and robust data use and sharing agreements, the ophthalmic community has tremendous opportunity in ushering artificial intelligence into medicine. By collaboratively building a powerful resource of open, anonymized multimodal ophthalmic data, the next generation of clinicians can advance data-driven eye care in unprecedented ways. SUMMARYThis piece demonstrates that with readily accessible data, immense progress can be achieved clinically and methodologically to realize artificial intelligenceʼs impact on clinical care. Exponentially progressive network effects can be seen by consolidating, curating and distributing data amongst both clinicians and data scientists.</abstract><cop>PHILADELPHIA</cop><pub>Wolters Kluwer Health, Inc. All rights reserved</pub><pmid>32740059</pmid><doi>10.1097/ICU.0000000000000678</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-8738
ispartof Current opinion in ophthalmology, 2020-09, Vol.31 (5), p.337-350
issn 1040-8738
1531-7021
language eng
recordid cdi_crossref_primary_10_1097_ICU_0000000000000678
source MEDLINE; Journals@Ovid Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Access to Information
Algorithms
Artificial Intelligence
Biomedical Research - trends
Humans
Life Sciences & Biomedicine
Ophthalmology
Ophthalmology - trends
Science & Technology
title Accelerating ophthalmic artificial intelligence research: the role of an open access data repository
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20ophthalmic%20artificial%20intelligence%20research:%20the%20role%20of%20an%20open%20access%20data%20repository&rft.jtitle=Current%20opinion%20in%20ophthalmology&rft.au=Kras,%20Ashley&rft.date=2020-09-01&rft.volume=31&rft.issue=5&rft.spage=337&rft.epage=350&rft.pages=337-350&rft.issn=1040-8738&rft.eissn=1531-7021&rft_id=info:doi/10.1097/ICU.0000000000000678&rft_dat=%3Cproquest_cross%3E2430092970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430092970&rft_id=info:pmid/32740059&rfr_iscdi=true