Accelerating ophthalmic artificial intelligence research: the role of an open access data repository
PURPOSE OF REVIEWArtificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of pr...
Gespeichert in:
Veröffentlicht in: | Current opinion in ophthalmology 2020-09, Vol.31 (5), p.337-350 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 5 |
container_start_page | 337 |
container_title | Current opinion in ophthalmology |
container_volume | 31 |
creator | Kras, Ashley Celi, Leo A. Miller, John B. |
description | PURPOSE OF REVIEWArtificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of protocols and checklists will accelerate the translation of research publications to impact on patient care.
RECENT FINDINGSBeyond technological scepticism, we lack uniformity in analysing algorithmic performance generalizability, and benchmarking impacts across clinical settings. No regulatory guardrails have been set to minimize bias or optimize interpretability; no consensus clinical acceptability thresholds or systematized postdeployment monitoring has been set. Moreover, stakeholders with misaligned incentives deepen the landscape complexity especially when it comes to the requisite data integration and harmonization to advance the field. Therefore, despite increasing algorithmic accuracy and commoditization, the infamous ‘implementation gap’ persists. Open clinical data repositories have been shown to rapidly accelerate research, minimize redundancies and disseminate the expertise and knowledge required to overcome existing barriers. Drawing upon the longstanding success of existing governance frameworks and robust data use and sharing agreements, the ophthalmic community has tremendous opportunity in ushering artificial intelligence into medicine. By collaboratively building a powerful resource of open, anonymized multimodal ophthalmic data, the next generation of clinicians can advance data-driven eye care in unprecedented ways.
SUMMARYThis piece demonstrates that with readily accessible data, immense progress can be achieved clinically and methodologically to realize artificial intelligenceʼs impact on clinical care. Exponentially progressive network effects can be seen by consolidating, curating and distributing data amongst both clinicians and data scientists. |
doi_str_mv | 10.1097/ICU.0000000000000678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1097_ICU_0000000000000678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430092970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4988-4560f02234e709ca43a72e61042d71ea345fe2b7f0c43a29eba06eccf43df79c3</originalsourceid><addsrcrecordid>eNqNkEFLHTEUhYMo1Wr_gZQsBRl7J8m8TLqToVZB6EbXQ17mxonmTV6TDOK_b55PRVy0zSa55HzncA8hxzWc1aDkt6vu9gzen4Vsd8hB3fC6ksDq3fIGAVUrebtPPqd0XzQC2uYT2edMCoBGHZDh3Bj0GHV20x0N6zGP2q-coTpmZ51x2lM3ZfTe3eFkkEZMqKMZv9M8lil4pMFSPRUWJ6qLW0p00FkX5Tokl0N8OiJ7VvuEX17uQ3J78eOmu6yuf_286s6vKyNU21aiWYAFxrhACcpowbVkuChbsEHWqLloLLKltGDKF1O41LBAY6zgg5XK8ENysvVdx_B7xpT7lUtlPa8nDHPqmeAAiikJRSq2UhNDShFtv45upeNTX0O_6bcv_fYf-y3Y15eEebnC4Q16LbQI2q3gEZfBJuM2pb3JiksjoVagng07l0vvYerCPOWCnv4_-i4o-IwxPfj5EWM_ovZ5_NcS4i_oJqiRvKkYMHhOqzag5H8AqOK37w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430092970</pqid></control><display><type>article</type><title>Accelerating ophthalmic artificial intelligence research: the role of an open access data repository</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Kras, Ashley ; Celi, Leo A. ; Miller, John B.</creator><creatorcontrib>Kras, Ashley ; Celi, Leo A. ; Miller, John B.</creatorcontrib><description>PURPOSE OF REVIEWArtificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of protocols and checklists will accelerate the translation of research publications to impact on patient care.
RECENT FINDINGSBeyond technological scepticism, we lack uniformity in analysing algorithmic performance generalizability, and benchmarking impacts across clinical settings. No regulatory guardrails have been set to minimize bias or optimize interpretability; no consensus clinical acceptability thresholds or systematized postdeployment monitoring has been set. Moreover, stakeholders with misaligned incentives deepen the landscape complexity especially when it comes to the requisite data integration and harmonization to advance the field. Therefore, despite increasing algorithmic accuracy and commoditization, the infamous ‘implementation gap’ persists. Open clinical data repositories have been shown to rapidly accelerate research, minimize redundancies and disseminate the expertise and knowledge required to overcome existing barriers. Drawing upon the longstanding success of existing governance frameworks and robust data use and sharing agreements, the ophthalmic community has tremendous opportunity in ushering artificial intelligence into medicine. By collaboratively building a powerful resource of open, anonymized multimodal ophthalmic data, the next generation of clinicians can advance data-driven eye care in unprecedented ways.
SUMMARYThis piece demonstrates that with readily accessible data, immense progress can be achieved clinically and methodologically to realize artificial intelligenceʼs impact on clinical care. Exponentially progressive network effects can be seen by consolidating, curating and distributing data amongst both clinicians and data scientists.</description><identifier>ISSN: 1040-8738</identifier><identifier>EISSN: 1531-7021</identifier><identifier>DOI: 10.1097/ICU.0000000000000678</identifier><identifier>PMID: 32740059</identifier><language>eng</language><publisher>PHILADELPHIA: Wolters Kluwer Health, Inc. All rights reserved</publisher><subject>Access to Information ; Algorithms ; Artificial Intelligence ; Biomedical Research - trends ; Humans ; Life Sciences & Biomedicine ; Ophthalmology ; Ophthalmology - trends ; Science & Technology</subject><ispartof>Current opinion in ophthalmology, 2020-09, Vol.31 (5), p.337-350</ispartof><rights>Wolters Kluwer Health, Inc. All rights reserved.</rights><rights>Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000570190900006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4988-4560f02234e709ca43a72e61042d71ea345fe2b7f0c43a29eba06eccf43df79c3</citedby><cites>FETCH-LOGICAL-c4988-4560f02234e709ca43a72e61042d71ea345fe2b7f0c43a29eba06eccf43df79c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32740059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kras, Ashley</creatorcontrib><creatorcontrib>Celi, Leo A.</creatorcontrib><creatorcontrib>Miller, John B.</creatorcontrib><title>Accelerating ophthalmic artificial intelligence research: the role of an open access data repository</title><title>Current opinion in ophthalmology</title><addtitle>CURR OPIN OPHTHALMOL</addtitle><addtitle>Curr Opin Ophthalmol</addtitle><description>PURPOSE OF REVIEWArtificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of protocols and checklists will accelerate the translation of research publications to impact on patient care.
RECENT FINDINGSBeyond technological scepticism, we lack uniformity in analysing algorithmic performance generalizability, and benchmarking impacts across clinical settings. No regulatory guardrails have been set to minimize bias or optimize interpretability; no consensus clinical acceptability thresholds or systematized postdeployment monitoring has been set. Moreover, stakeholders with misaligned incentives deepen the landscape complexity especially when it comes to the requisite data integration and harmonization to advance the field. Therefore, despite increasing algorithmic accuracy and commoditization, the infamous ‘implementation gap’ persists. Open clinical data repositories have been shown to rapidly accelerate research, minimize redundancies and disseminate the expertise and knowledge required to overcome existing barriers. Drawing upon the longstanding success of existing governance frameworks and robust data use and sharing agreements, the ophthalmic community has tremendous opportunity in ushering artificial intelligence into medicine. By collaboratively building a powerful resource of open, anonymized multimodal ophthalmic data, the next generation of clinicians can advance data-driven eye care in unprecedented ways.
SUMMARYThis piece demonstrates that with readily accessible data, immense progress can be achieved clinically and methodologically to realize artificial intelligenceʼs impact on clinical care. Exponentially progressive network effects can be seen by consolidating, curating and distributing data amongst both clinicians and data scientists.</description><subject>Access to Information</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biomedical Research - trends</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>Ophthalmology</subject><subject>Ophthalmology - trends</subject><subject>Science & Technology</subject><issn>1040-8738</issn><issn>1531-7021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkEFLHTEUhYMo1Wr_gZQsBRl7J8m8TLqToVZB6EbXQ17mxonmTV6TDOK_b55PRVy0zSa55HzncA8hxzWc1aDkt6vu9gzen4Vsd8hB3fC6ksDq3fIGAVUrebtPPqd0XzQC2uYT2edMCoBGHZDh3Bj0GHV20x0N6zGP2q-coTpmZ51x2lM3ZfTe3eFkkEZMqKMZv9M8lil4pMFSPRUWJ6qLW0p00FkX5Tokl0N8OiJ7VvuEX17uQ3J78eOmu6yuf_286s6vKyNU21aiWYAFxrhACcpowbVkuChbsEHWqLloLLKltGDKF1O41LBAY6zgg5XK8ENysvVdx_B7xpT7lUtlPa8nDHPqmeAAiikJRSq2UhNDShFtv45upeNTX0O_6bcv_fYf-y3Y15eEebnC4Q16LbQI2q3gEZfBJuM2pb3JiksjoVagng07l0vvYerCPOWCnv4_-i4o-IwxPfj5EWM_ovZ5_NcS4i_oJqiRvKkYMHhOqzag5H8AqOK37w</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kras, Ashley</creator><creator>Celi, Leo A.</creator><creator>Miller, John B.</creator><general>Wolters Kluwer Health, Inc. All rights reserved</general><general>Copyright Wolters Kluwer Health, Inc. All rights reserved</general><general>Lippincott Williams & Wilkins</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200901</creationdate><title>Accelerating ophthalmic artificial intelligence research: the role of an open access data repository</title><author>Kras, Ashley ; Celi, Leo A. ; Miller, John B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4988-4560f02234e709ca43a72e61042d71ea345fe2b7f0c43a29eba06eccf43df79c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Access to Information</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biomedical Research - trends</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>Ophthalmology</topic><topic>Ophthalmology - trends</topic><topic>Science & Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Kras, Ashley</creatorcontrib><creatorcontrib>Celi, Leo A.</creatorcontrib><creatorcontrib>Miller, John B.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in ophthalmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kras, Ashley</au><au>Celi, Leo A.</au><au>Miller, John B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating ophthalmic artificial intelligence research: the role of an open access data repository</atitle><jtitle>Current opinion in ophthalmology</jtitle><stitle>CURR OPIN OPHTHALMOL</stitle><addtitle>Curr Opin Ophthalmol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>31</volume><issue>5</issue><spage>337</spage><epage>350</epage><pages>337-350</pages><issn>1040-8738</issn><eissn>1531-7021</eissn><abstract>PURPOSE OF REVIEWArtificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of protocols and checklists will accelerate the translation of research publications to impact on patient care.
RECENT FINDINGSBeyond technological scepticism, we lack uniformity in analysing algorithmic performance generalizability, and benchmarking impacts across clinical settings. No regulatory guardrails have been set to minimize bias or optimize interpretability; no consensus clinical acceptability thresholds or systematized postdeployment monitoring has been set. Moreover, stakeholders with misaligned incentives deepen the landscape complexity especially when it comes to the requisite data integration and harmonization to advance the field. Therefore, despite increasing algorithmic accuracy and commoditization, the infamous ‘implementation gap’ persists. Open clinical data repositories have been shown to rapidly accelerate research, minimize redundancies and disseminate the expertise and knowledge required to overcome existing barriers. Drawing upon the longstanding success of existing governance frameworks and robust data use and sharing agreements, the ophthalmic community has tremendous opportunity in ushering artificial intelligence into medicine. By collaboratively building a powerful resource of open, anonymized multimodal ophthalmic data, the next generation of clinicians can advance data-driven eye care in unprecedented ways.
SUMMARYThis piece demonstrates that with readily accessible data, immense progress can be achieved clinically and methodologically to realize artificial intelligenceʼs impact on clinical care. Exponentially progressive network effects can be seen by consolidating, curating and distributing data amongst both clinicians and data scientists.</abstract><cop>PHILADELPHIA</cop><pub>Wolters Kluwer Health, Inc. All rights reserved</pub><pmid>32740059</pmid><doi>10.1097/ICU.0000000000000678</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-8738 |
ispartof | Current opinion in ophthalmology, 2020-09, Vol.31 (5), p.337-350 |
issn | 1040-8738 1531-7021 |
language | eng |
recordid | cdi_crossref_primary_10_1097_ICU_0000000000000678 |
source | MEDLINE; Journals@Ovid Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Access to Information Algorithms Artificial Intelligence Biomedical Research - trends Humans Life Sciences & Biomedicine Ophthalmology Ophthalmology - trends Science & Technology |
title | Accelerating ophthalmic artificial intelligence research: the role of an open access data repository |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20ophthalmic%20artificial%20intelligence%20research:%20the%20role%20of%20an%20open%20access%20data%20repository&rft.jtitle=Current%20opinion%20in%20ophthalmology&rft.au=Kras,%20Ashley&rft.date=2020-09-01&rft.volume=31&rft.issue=5&rft.spage=337&rft.epage=350&rft.pages=337-350&rft.issn=1040-8738&rft.eissn=1531-7021&rft_id=info:doi/10.1097/ICU.0000000000000678&rft_dat=%3Cproquest_cross%3E2430092970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430092970&rft_id=info:pmid/32740059&rfr_iscdi=true |