Cell Cycle Synchronization of Porcine Fetal Fibroblasts: Effects of Serum Deprivation and Reversible Cell Cycle Inhibitors1

The success of somatic nuclear transfer critically depends on the cell cycle stage of the donor nucleus and the recipient cytoplast. In this study we tested serum deprivation as well as two reversible cell cycle inhibitors, aphidicolin and butyrolactone I, for their ability to synchronize porcine fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 2000-02, Vol.62 (2), p.412-419
Hauptverfasser: Kues, W. A, Anger, M, Carnwath, J. W, Paul, D, Motlik, J, Niemann, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 2
container_start_page 412
container_title Biology of reproduction
container_volume 62
creator Kues, W. A
Anger, M
Carnwath, J. W
Paul, D
Motlik, J
Niemann, H
description The success of somatic nuclear transfer critically depends on the cell cycle stage of the donor nucleus and the recipient cytoplast. In this study we tested serum deprivation as well as two reversible cell cycle inhibitors, aphidicolin and butyrolactone I, for their ability to synchronize porcine fetal fibroblasts at either G0 stage or G1/S or G2/M transition. The synchronization efficiency of the various protocols was determined by fluorescence-activated cell sorting (FACS), cell proliferation assays, and semiquantitative multiplex reverse transcription-polymerase chain reaction detection of the cell cycle-regulated porcine Polo-like kinase mRNA (Plk-p). FACS measurements revealed that 66.6–73.3% of the porcine fetal fibroblasts were in G0/G1 stage (2C DNA content) in serum-supplemented medium. Short periods of 24–72 h of serum deprivation significantly increased the proportion of cells at G0/G1 phase to 77.9–80.2%, and mitotic activity had already terminated after 48 h. Prolonged culture in serum-deprived medium induced massive DNA fragmentation. Aphidicolin treatment led to an accumulation of 81.9 ± 4.9% of cells at the G1/S transition. Butyrolactone I arrested 81.0 ± 5.8% of the cells at the end of G1 stage and 37.0 ± 6.8% at the G2/M transition. The effects of both chemical inhibitors were fully reversible, and their removal led to a rapid progression in the cell cycle. The measurement of Plk-p expression allowed discrimination between the presumptive G0 phase induced by serum deprivation and the G1/S transition arrest achieved by chemical inhibitors. These data indicate that porcine fetal fibroblasts can be effectively synchronized at various cell cycle stages without compromising their proliferation capacity.
doi_str_mv 10.1095/biolreprod62.2.412
format Article
fullrecord <record><control><sourceid>bioone_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1095_biolreprod62_2_412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>bioone_primary_10_1095_biolreprod62_2_412</sourcerecordid><originalsourceid>FETCH-LOGICAL-b2432-ea497dac8dd957082d90aa4db0e49f0254428302718b06b992b79542de62c1743</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEqXwApz8AinrjfNjbii0gFQJROEc2fFGNUpjZIdKhZcnVTn0yGkPs9_MaBi7FjAToLIb43wX6DN4m-MMZ1LgCZuIDFVSYF6esgkA5Ema5uk5u4jxA0DIFNMJ-6mo63i1azriq13frIPv3bcenO-5b_mLD43riS9o0B1fOBO86XQc4i2fty01Q9x_rSh8bfj9mO-2B1T3lr_SlkJ0ZnQ-Cnnq1864wYcoLtlZq7tIV393yt4X87fqMVk-PzxVd8vE4FgyIS1VYXVTWquyAkq0CrSW1gBJ1QJmUmKZAhaiNJAbpdAUKpNoKcdGFDKdMjz4NsHHGKitx6IbHXa1gHo_X308X431ON8IwQEaNd_Tf5BfX-x3qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cell Cycle Synchronization of Porcine Fetal Fibroblasts: Effects of Serum Deprivation and Reversible Cell Cycle Inhibitors1</title><source>BioOne Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kues, W. A ; Anger, M ; Carnwath, J. W ; Paul, D ; Motlik, J ; Niemann, H</creator><creatorcontrib>Kues, W. A ; Anger, M ; Carnwath, J. W ; Paul, D ; Motlik, J ; Niemann, H</creatorcontrib><description>The success of somatic nuclear transfer critically depends on the cell cycle stage of the donor nucleus and the recipient cytoplast. In this study we tested serum deprivation as well as two reversible cell cycle inhibitors, aphidicolin and butyrolactone I, for their ability to synchronize porcine fetal fibroblasts at either G0 stage or G1/S or G2/M transition. The synchronization efficiency of the various protocols was determined by fluorescence-activated cell sorting (FACS), cell proliferation assays, and semiquantitative multiplex reverse transcription-polymerase chain reaction detection of the cell cycle-regulated porcine Polo-like kinase mRNA (Plk-p). FACS measurements revealed that 66.6–73.3% of the porcine fetal fibroblasts were in G0/G1 stage (2C DNA content) in serum-supplemented medium. Short periods of 24–72 h of serum deprivation significantly increased the proportion of cells at G0/G1 phase to 77.9–80.2%, and mitotic activity had already terminated after 48 h. Prolonged culture in serum-deprived medium induced massive DNA fragmentation. Aphidicolin treatment led to an accumulation of 81.9 ± 4.9% of cells at the G1/S transition. Butyrolactone I arrested 81.0 ± 5.8% of the cells at the end of G1 stage and 37.0 ± 6.8% at the G2/M transition. The effects of both chemical inhibitors were fully reversible, and their removal led to a rapid progression in the cell cycle. The measurement of Plk-p expression allowed discrimination between the presumptive G0 phase induced by serum deprivation and the G1/S transition arrest achieved by chemical inhibitors. These data indicate that porcine fetal fibroblasts can be effectively synchronized at various cell cycle stages without compromising their proliferation capacity.</description><identifier>ISSN: 0006-3363</identifier><identifier>EISSN: 1529-7268</identifier><identifier>DOI: 10.1095/biolreprod62.2.412</identifier><language>eng</language><subject>Contents</subject><ispartof>Biology of reproduction, 2000-02, Vol.62 (2), p.412-419</ispartof><rights>Society for the Study of Reproduction</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b2432-ea497dac8dd957082d90aa4db0e49f0254428302718b06b992b79542de62c1743</citedby><cites>FETCH-LOGICAL-b2432-ea497dac8dd957082d90aa4db0e49f0254428302718b06b992b79542de62c1743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1095/biolreprod62.2.412$$EPDF$$P50$$Gbioone$$H</linktopdf><link.rule.ids>314,780,784,26978,27924,27925,52363</link.rule.ids></links><search><creatorcontrib>Kues, W. A</creatorcontrib><creatorcontrib>Anger, M</creatorcontrib><creatorcontrib>Carnwath, J. W</creatorcontrib><creatorcontrib>Paul, D</creatorcontrib><creatorcontrib>Motlik, J</creatorcontrib><creatorcontrib>Niemann, H</creatorcontrib><title>Cell Cycle Synchronization of Porcine Fetal Fibroblasts: Effects of Serum Deprivation and Reversible Cell Cycle Inhibitors1</title><title>Biology of reproduction</title><description>The success of somatic nuclear transfer critically depends on the cell cycle stage of the donor nucleus and the recipient cytoplast. In this study we tested serum deprivation as well as two reversible cell cycle inhibitors, aphidicolin and butyrolactone I, for their ability to synchronize porcine fetal fibroblasts at either G0 stage or G1/S or G2/M transition. The synchronization efficiency of the various protocols was determined by fluorescence-activated cell sorting (FACS), cell proliferation assays, and semiquantitative multiplex reverse transcription-polymerase chain reaction detection of the cell cycle-regulated porcine Polo-like kinase mRNA (Plk-p). FACS measurements revealed that 66.6–73.3% of the porcine fetal fibroblasts were in G0/G1 stage (2C DNA content) in serum-supplemented medium. Short periods of 24–72 h of serum deprivation significantly increased the proportion of cells at G0/G1 phase to 77.9–80.2%, and mitotic activity had already terminated after 48 h. Prolonged culture in serum-deprived medium induced massive DNA fragmentation. Aphidicolin treatment led to an accumulation of 81.9 ± 4.9% of cells at the G1/S transition. Butyrolactone I arrested 81.0 ± 5.8% of the cells at the end of G1 stage and 37.0 ± 6.8% at the G2/M transition. The effects of both chemical inhibitors were fully reversible, and their removal led to a rapid progression in the cell cycle. The measurement of Plk-p expression allowed discrimination between the presumptive G0 phase induced by serum deprivation and the G1/S transition arrest achieved by chemical inhibitors. These data indicate that porcine fetal fibroblasts can be effectively synchronized at various cell cycle stages without compromising their proliferation capacity.</description><subject>Contents</subject><issn>0006-3363</issn><issn>1529-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEqXwApz8AinrjfNjbii0gFQJROEc2fFGNUpjZIdKhZcnVTn0yGkPs9_MaBi7FjAToLIb43wX6DN4m-MMZ1LgCZuIDFVSYF6esgkA5Ema5uk5u4jxA0DIFNMJ-6mo63i1azriq13frIPv3bcenO-5b_mLD43riS9o0B1fOBO86XQc4i2fty01Q9x_rSh8bfj9mO-2B1T3lr_SlkJ0ZnQ-Cnnq1864wYcoLtlZq7tIV393yt4X87fqMVk-PzxVd8vE4FgyIS1VYXVTWquyAkq0CrSW1gBJ1QJmUmKZAhaiNJAbpdAUKpNoKcdGFDKdMjz4NsHHGKitx6IbHXa1gHo_X308X431ON8IwQEaNd_Tf5BfX-x3qg</recordid><startdate>200002</startdate><enddate>200002</enddate><creator>Kues, W. A</creator><creator>Anger, M</creator><creator>Carnwath, J. W</creator><creator>Paul, D</creator><creator>Motlik, J</creator><creator>Niemann, H</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200002</creationdate><title>Cell Cycle Synchronization of Porcine Fetal Fibroblasts: Effects of Serum Deprivation and Reversible Cell Cycle Inhibitors1</title><author>Kues, W. A ; Anger, M ; Carnwath, J. W ; Paul, D ; Motlik, J ; Niemann, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b2432-ea497dac8dd957082d90aa4db0e49f0254428302718b06b992b79542de62c1743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Contents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kues, W. A</creatorcontrib><creatorcontrib>Anger, M</creatorcontrib><creatorcontrib>Carnwath, J. W</creatorcontrib><creatorcontrib>Paul, D</creatorcontrib><creatorcontrib>Motlik, J</creatorcontrib><creatorcontrib>Niemann, H</creatorcontrib><collection>CrossRef</collection><jtitle>Biology of reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kues, W. A</au><au>Anger, M</au><au>Carnwath, J. W</au><au>Paul, D</au><au>Motlik, J</au><au>Niemann, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell Cycle Synchronization of Porcine Fetal Fibroblasts: Effects of Serum Deprivation and Reversible Cell Cycle Inhibitors1</atitle><jtitle>Biology of reproduction</jtitle><date>2000-02</date><risdate>2000</risdate><volume>62</volume><issue>2</issue><spage>412</spage><epage>419</epage><pages>412-419</pages><issn>0006-3363</issn><eissn>1529-7268</eissn><abstract>The success of somatic nuclear transfer critically depends on the cell cycle stage of the donor nucleus and the recipient cytoplast. In this study we tested serum deprivation as well as two reversible cell cycle inhibitors, aphidicolin and butyrolactone I, for their ability to synchronize porcine fetal fibroblasts at either G0 stage or G1/S or G2/M transition. The synchronization efficiency of the various protocols was determined by fluorescence-activated cell sorting (FACS), cell proliferation assays, and semiquantitative multiplex reverse transcription-polymerase chain reaction detection of the cell cycle-regulated porcine Polo-like kinase mRNA (Plk-p). FACS measurements revealed that 66.6–73.3% of the porcine fetal fibroblasts were in G0/G1 stage (2C DNA content) in serum-supplemented medium. Short periods of 24–72 h of serum deprivation significantly increased the proportion of cells at G0/G1 phase to 77.9–80.2%, and mitotic activity had already terminated after 48 h. Prolonged culture in serum-deprived medium induced massive DNA fragmentation. Aphidicolin treatment led to an accumulation of 81.9 ± 4.9% of cells at the G1/S transition. Butyrolactone I arrested 81.0 ± 5.8% of the cells at the end of G1 stage and 37.0 ± 6.8% at the G2/M transition. The effects of both chemical inhibitors were fully reversible, and their removal led to a rapid progression in the cell cycle. The measurement of Plk-p expression allowed discrimination between the presumptive G0 phase induced by serum deprivation and the G1/S transition arrest achieved by chemical inhibitors. These data indicate that porcine fetal fibroblasts can be effectively synchronized at various cell cycle stages without compromising their proliferation capacity.</abstract><doi>10.1095/biolreprod62.2.412</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3363
ispartof Biology of reproduction, 2000-02, Vol.62 (2), p.412-419
issn 0006-3363
1529-7268
language eng
recordid cdi_crossref_primary_10_1095_biolreprod62_2_412
source BioOne Complete; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Contents
title Cell Cycle Synchronization of Porcine Fetal Fibroblasts: Effects of Serum Deprivation and Reversible Cell Cycle Inhibitors1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-bioone_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20Cycle%20Synchronization%20of%20Porcine%20Fetal%20Fibroblasts:%20Effects%20of%20Serum%20Deprivation%20and%20Reversible%20Cell%20Cycle%20Inhibitors1&rft.jtitle=Biology%20of%20reproduction&rft.au=Kues,%20W.%20A&rft.date=2000-02&rft.volume=62&rft.issue=2&rft.spage=412&rft.epage=419&rft.pages=412-419&rft.issn=0006-3363&rft.eissn=1529-7268&rft_id=info:doi/10.1095/biolreprod62.2.412&rft_dat=%3Cbioone_cross%3Ebioone_primary_10_1095_biolreprod62_2_412%3C/bioone_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true