Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87

The antibiotic 2,4-diacetylphloroglucinol (Phl) is an important factor in the biological control by fluorescent Pseudomonas spp. of many soilborne diseases including take-all disease of wheat. A 6.5-kb genomic DNA fragment from Pseudomonas fluorescens Q2-87 conferred production of Phl and of a red p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant-microbe interactions 1996-03, Vol.9 (2), p.83-90
Hauptverfasser: Bangera, M.G. (Washington State University, Pullman.), Thomashow, L.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The antibiotic 2,4-diacetylphloroglucinol (Phl) is an important factor in the biological control by fluorescent Pseudomonas spp. of many soilborne diseases including take-all disease of wheat. A 6.5-kb genomic DNA fragment from Pseudomonas fluorescens Q2-87 conferred production of Phl and of a red pigment distinct from Phl, but which typically is present when Phl is produced, upon all of 13 Phl-nonproducing recipient Pseudomonas strains into which it was introduced. Larger fragments that included flanking DNA sequences did not transfer this capability, suggesting that they contain negative regulatory element(s). Analysis of the 6.5-kb fragment by Tn3HoHo1 mutagenesis further localized the sequences required for Phl production to a segment of approximately 5 kb and revealed the presence of at least two divergently oriented transcriptional units. Insertions within the smaller unit or within about 3 kb of the 5' end of the larger unit caused loss of production of both Phl and the red pigment. Other insertions within the distal 1.5 kb of the larger transcriptional unit abolished production of only the red pigment. Pleiotropic changes in secondary metabolism or colony morphology were not observed in Pseudomonas strains containing the 6.5-kb fragment, although some Phl-producing derivatives grew more slowly and gave rise to smaller colonies than did the wild-type parental strains. The size of the genomic region involved in Phl production, and the consistency and specificity with which these sequences transferred Phl biosynthetic capability, support the conclusion that the 6.5-kb fragment contains the Phl biosynthetic locus
ISSN:0894-0282
1943-7706
DOI:10.1094/mpmi-9-0083