FEASIBILITY STUDY ON THE FUSION OF PHITS SIMULATIONS AND THE DLNN ALGORITHM FOR A NEW QUANTITATIVE METHOD OF IN-SITU MULTIPLE-CHANNEL DEPTH DISTRIBUTION SPECTROMETRY

Abstract We have recently have developed an in-situ multiple-channel depth distribution spectrometer (DDS) that can easily acquire on-site measurements of the depth distribution of specific radioactivities of Cs-134 and Cs-137 underground. Despite considerable improvements in the hardware developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation protection dosimetry 2019-10, Vol.184 (3-4), p.328-333
Hauptverfasser: Sakama, M, Fujimoto, K, Inoue, K, Fukushi, M, Imajyo, Y, Fukuhara, T, Matsuura, M, Yajima, T, Endo, M, Fujisawa, M, Matsumoto-Kawaguchi, E
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 3-4
container_start_page 328
container_title Radiation protection dosimetry
container_volume 184
creator Sakama, M
Fujimoto, K
Inoue, K
Fukushi, M
Imajyo, Y
Fukuhara, T
Matsuura, M
Yajima, T
Endo, M
Fujisawa, M
Matsumoto-Kawaguchi, E
description Abstract We have recently have developed an in-situ multiple-channel depth distribution spectrometer (DDS) that can easily acquire on-site measurements of the depth distribution of specific radioactivities of Cs-134 and Cs-137 underground. Despite considerable improvements in the hardware developed for this device, the quantitative method for determining of radioactivities with this DDS device cannot yet achieve satisfactory performance for practical use. For example, this method cannot discriminate each γ-ray spectra of Cs-134 and Cs-137 acquired by the 20 thallium-doped caesium iodine CsI(Tl) scintillation crystal detectors of the DDS device from corresponding depth levels of underground soil. Therefore, we have applied deep learning neural network (DLNN) as a novel radiation measurement technique to discriminate the spectra and to determine the specific radioactivities of Cs-134 and Cs-137. We have developed model soil layers on a virtual space in Monte-Carlo based PHITS simulations and transported γ-ray radiation generated from a particular single soil layer or multiple layers as radiation sources; next, we performed PHITS calculations of those specific radioactivity measurements for each soil layer using DDS device based on machine learning via the DLNN algorithm. In this study, we obtained informative results regarding the feasibility of the proposal innovative radiation measurement method for further practical use in on-site applications.
doi_str_mv 10.1093/rpd/ncz093
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_rpd_ncz093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/rpd/ncz093</oup_id><sourcerecordid>10.1093/rpd/ncz093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-65b19312b4665a69f062c00f22fcdbce264dcd62812f48b03f4051e41106d0a03</originalsourceid><addsrcrecordid>eNp9kE1P20AQhlcVqATaCz8AzYULksnshzfJ0cTreCVnnXrXrXKy4i-pVSmRXQ7l__A_2RDg2NO8Gj3zjvQQcknxluKCT4d9O_3TPPn4iUzoTLCAC5QnZIJUiGAuGJ6R83H8hchmi1B8JmecIp_PUEzIc6Iiq-90pt0WrCvjLeQGXKogKa32MU9gk2pnwep1mUXO7yxEJn5l4swYiLJVXmiXriHJC4jAqB_wrYyM087j3xWslUvz-NCkTWC1K8E3Ob3JVLBMI2NUBrHauBRibV2h78rDE7AbtXRF7o-L7Rdy2u9-j93Xt3lBykS5ZRpk-UovoyxoeMj_BjKs6YJTVgspw51c9ChZg9gz1jdt3XRMirZpJZtT1ot5jbwXGNJOUIqyxR3yC3Jz7G2Gh3Ecur7aDz_vd8O_imJ1cF1519XRtYevjvD-sb7v2g_0Xa4Hro_Aw-P-f0UvGIR68Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FEASIBILITY STUDY ON THE FUSION OF PHITS SIMULATIONS AND THE DLNN ALGORITHM FOR A NEW QUANTITATIVE METHOD OF IN-SITU MULTIPLE-CHANNEL DEPTH DISTRIBUTION SPECTROMETRY</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Sakama, M ; Fujimoto, K ; Inoue, K ; Fukushi, M ; Imajyo, Y ; Fukuhara, T ; Matsuura, M ; Yajima, T ; Endo, M ; Fujisawa, M ; Matsumoto-Kawaguchi, E</creator><creatorcontrib>Sakama, M ; Fujimoto, K ; Inoue, K ; Fukushi, M ; Imajyo, Y ; Fukuhara, T ; Matsuura, M ; Yajima, T ; Endo, M ; Fujisawa, M ; Matsumoto-Kawaguchi, E</creatorcontrib><description>Abstract We have recently have developed an in-situ multiple-channel depth distribution spectrometer (DDS) that can easily acquire on-site measurements of the depth distribution of specific radioactivities of Cs-134 and Cs-137 underground. Despite considerable improvements in the hardware developed for this device, the quantitative method for determining of radioactivities with this DDS device cannot yet achieve satisfactory performance for practical use. For example, this method cannot discriminate each γ-ray spectra of Cs-134 and Cs-137 acquired by the 20 thallium-doped caesium iodine CsI(Tl) scintillation crystal detectors of the DDS device from corresponding depth levels of underground soil. Therefore, we have applied deep learning neural network (DLNN) as a novel radiation measurement technique to discriminate the spectra and to determine the specific radioactivities of Cs-134 and Cs-137. We have developed model soil layers on a virtual space in Monte-Carlo based PHITS simulations and transported γ-ray radiation generated from a particular single soil layer or multiple layers as radiation sources; next, we performed PHITS calculations of those specific radioactivity measurements for each soil layer using DDS device based on machine learning via the DLNN algorithm. In this study, we obtained informative results regarding the feasibility of the proposal innovative radiation measurement method for further practical use in on-site applications.</description><identifier>ISSN: 0144-8420</identifier><identifier>EISSN: 1742-3406</identifier><identifier>DOI: 10.1093/rpd/ncz093</identifier><identifier>PMID: 31038704</identifier><language>eng ; jpn</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Cesium Radioisotopes - analysis ; Computer Simulation ; Feasibility Studies ; Humans ; Radiation Monitoring ; Scintillation Counting - instrumentation ; Soil Pollutants, Radioactive - analysis ; Spectrometry, Gamma</subject><ispartof>Radiation protection dosimetry, 2019-10, Vol.184 (3-4), p.328-333</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-65b19312b4665a69f062c00f22fcdbce264dcd62812f48b03f4051e41106d0a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31038704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakama, M</creatorcontrib><creatorcontrib>Fujimoto, K</creatorcontrib><creatorcontrib>Inoue, K</creatorcontrib><creatorcontrib>Fukushi, M</creatorcontrib><creatorcontrib>Imajyo, Y</creatorcontrib><creatorcontrib>Fukuhara, T</creatorcontrib><creatorcontrib>Matsuura, M</creatorcontrib><creatorcontrib>Yajima, T</creatorcontrib><creatorcontrib>Endo, M</creatorcontrib><creatorcontrib>Fujisawa, M</creatorcontrib><creatorcontrib>Matsumoto-Kawaguchi, E</creatorcontrib><title>FEASIBILITY STUDY ON THE FUSION OF PHITS SIMULATIONS AND THE DLNN ALGORITHM FOR A NEW QUANTITATIVE METHOD OF IN-SITU MULTIPLE-CHANNEL DEPTH DISTRIBUTION SPECTROMETRY</title><title>Radiation protection dosimetry</title><addtitle>Radiat Prot Dosimetry</addtitle><description>Abstract We have recently have developed an in-situ multiple-channel depth distribution spectrometer (DDS) that can easily acquire on-site measurements of the depth distribution of specific radioactivities of Cs-134 and Cs-137 underground. Despite considerable improvements in the hardware developed for this device, the quantitative method for determining of radioactivities with this DDS device cannot yet achieve satisfactory performance for practical use. For example, this method cannot discriminate each γ-ray spectra of Cs-134 and Cs-137 acquired by the 20 thallium-doped caesium iodine CsI(Tl) scintillation crystal detectors of the DDS device from corresponding depth levels of underground soil. Therefore, we have applied deep learning neural network (DLNN) as a novel radiation measurement technique to discriminate the spectra and to determine the specific radioactivities of Cs-134 and Cs-137. We have developed model soil layers on a virtual space in Monte-Carlo based PHITS simulations and transported γ-ray radiation generated from a particular single soil layer or multiple layers as radiation sources; next, we performed PHITS calculations of those specific radioactivity measurements for each soil layer using DDS device based on machine learning via the DLNN algorithm. In this study, we obtained informative results regarding the feasibility of the proposal innovative radiation measurement method for further practical use in on-site applications.</description><subject>Algorithms</subject><subject>Cesium Radioisotopes - analysis</subject><subject>Computer Simulation</subject><subject>Feasibility Studies</subject><subject>Humans</subject><subject>Radiation Monitoring</subject><subject>Scintillation Counting - instrumentation</subject><subject>Soil Pollutants, Radioactive - analysis</subject><subject>Spectrometry, Gamma</subject><issn>0144-8420</issn><issn>1742-3406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P20AQhlcVqATaCz8AzYULksnshzfJ0cTreCVnnXrXrXKy4i-pVSmRXQ7l__A_2RDg2NO8Gj3zjvQQcknxluKCT4d9O_3TPPn4iUzoTLCAC5QnZIJUiGAuGJ6R83H8hchmi1B8JmecIp_PUEzIc6Iiq-90pt0WrCvjLeQGXKogKa32MU9gk2pnwep1mUXO7yxEJn5l4swYiLJVXmiXriHJC4jAqB_wrYyM087j3xWslUvz-NCkTWC1K8E3Ob3JVLBMI2NUBrHauBRibV2h78rDE7AbtXRF7o-L7Rdy2u9-j93Xt3lBykS5ZRpk-UovoyxoeMj_BjKs6YJTVgspw51c9ChZg9gz1jdt3XRMirZpJZtT1ot5jbwXGNJOUIqyxR3yC3Jz7G2Gh3Ecur7aDz_vd8O_imJ1cF1519XRtYevjvD-sb7v2g_0Xa4Hro_Aw-P-f0UvGIR68Q</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Sakama, M</creator><creator>Fujimoto, K</creator><creator>Inoue, K</creator><creator>Fukushi, M</creator><creator>Imajyo, Y</creator><creator>Fukuhara, T</creator><creator>Matsuura, M</creator><creator>Yajima, T</creator><creator>Endo, M</creator><creator>Fujisawa, M</creator><creator>Matsumoto-Kawaguchi, E</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>FEASIBILITY STUDY ON THE FUSION OF PHITS SIMULATIONS AND THE DLNN ALGORITHM FOR A NEW QUANTITATIVE METHOD OF IN-SITU MULTIPLE-CHANNEL DEPTH DISTRIBUTION SPECTROMETRY</title><author>Sakama, M ; Fujimoto, K ; Inoue, K ; Fukushi, M ; Imajyo, Y ; Fukuhara, T ; Matsuura, M ; Yajima, T ; Endo, M ; Fujisawa, M ; Matsumoto-Kawaguchi, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-65b19312b4665a69f062c00f22fcdbce264dcd62812f48b03f4051e41106d0a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cesium Radioisotopes - analysis</topic><topic>Computer Simulation</topic><topic>Feasibility Studies</topic><topic>Humans</topic><topic>Radiation Monitoring</topic><topic>Scintillation Counting - instrumentation</topic><topic>Soil Pollutants, Radioactive - analysis</topic><topic>Spectrometry, Gamma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakama, M</creatorcontrib><creatorcontrib>Fujimoto, K</creatorcontrib><creatorcontrib>Inoue, K</creatorcontrib><creatorcontrib>Fukushi, M</creatorcontrib><creatorcontrib>Imajyo, Y</creatorcontrib><creatorcontrib>Fukuhara, T</creatorcontrib><creatorcontrib>Matsuura, M</creatorcontrib><creatorcontrib>Yajima, T</creatorcontrib><creatorcontrib>Endo, M</creatorcontrib><creatorcontrib>Fujisawa, M</creatorcontrib><creatorcontrib>Matsumoto-Kawaguchi, E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Radiation protection dosimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakama, M</au><au>Fujimoto, K</au><au>Inoue, K</au><au>Fukushi, M</au><au>Imajyo, Y</au><au>Fukuhara, T</au><au>Matsuura, M</au><au>Yajima, T</au><au>Endo, M</au><au>Fujisawa, M</au><au>Matsumoto-Kawaguchi, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FEASIBILITY STUDY ON THE FUSION OF PHITS SIMULATIONS AND THE DLNN ALGORITHM FOR A NEW QUANTITATIVE METHOD OF IN-SITU MULTIPLE-CHANNEL DEPTH DISTRIBUTION SPECTROMETRY</atitle><jtitle>Radiation protection dosimetry</jtitle><addtitle>Radiat Prot Dosimetry</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>184</volume><issue>3-4</issue><spage>328</spage><epage>333</epage><pages>328-333</pages><issn>0144-8420</issn><eissn>1742-3406</eissn><abstract>Abstract We have recently have developed an in-situ multiple-channel depth distribution spectrometer (DDS) that can easily acquire on-site measurements of the depth distribution of specific radioactivities of Cs-134 and Cs-137 underground. Despite considerable improvements in the hardware developed for this device, the quantitative method for determining of radioactivities with this DDS device cannot yet achieve satisfactory performance for practical use. For example, this method cannot discriminate each γ-ray spectra of Cs-134 and Cs-137 acquired by the 20 thallium-doped caesium iodine CsI(Tl) scintillation crystal detectors of the DDS device from corresponding depth levels of underground soil. Therefore, we have applied deep learning neural network (DLNN) as a novel radiation measurement technique to discriminate the spectra and to determine the specific radioactivities of Cs-134 and Cs-137. We have developed model soil layers on a virtual space in Monte-Carlo based PHITS simulations and transported γ-ray radiation generated from a particular single soil layer or multiple layers as radiation sources; next, we performed PHITS calculations of those specific radioactivity measurements for each soil layer using DDS device based on machine learning via the DLNN algorithm. In this study, we obtained informative results regarding the feasibility of the proposal innovative radiation measurement method for further practical use in on-site applications.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31038704</pmid><doi>10.1093/rpd/ncz093</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0144-8420
ispartof Radiation protection dosimetry, 2019-10, Vol.184 (3-4), p.328-333
issn 0144-8420
1742-3406
language eng ; jpn
recordid cdi_crossref_primary_10_1093_rpd_ncz093
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Algorithms
Cesium Radioisotopes - analysis
Computer Simulation
Feasibility Studies
Humans
Radiation Monitoring
Scintillation Counting - instrumentation
Soil Pollutants, Radioactive - analysis
Spectrometry, Gamma
title FEASIBILITY STUDY ON THE FUSION OF PHITS SIMULATIONS AND THE DLNN ALGORITHM FOR A NEW QUANTITATIVE METHOD OF IN-SITU MULTIPLE-CHANNEL DEPTH DISTRIBUTION SPECTROMETRY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FEASIBILITY%20STUDY%20ON%20THE%20FUSION%20OF%20PHITS%20SIMULATIONS%20AND%20THE%20DLNN%20ALGORITHM%20FOR%20A%20NEW%20QUANTITATIVE%20METHOD%20OF%20IN-SITU%20MULTIPLE-CHANNEL%20DEPTH%20DISTRIBUTION%20SPECTROMETRY&rft.jtitle=Radiation%20protection%20dosimetry&rft.au=Sakama,%20M&rft.date=2019-10-01&rft.volume=184&rft.issue=3-4&rft.spage=328&rft.epage=333&rft.pages=328-333&rft.issn=0144-8420&rft.eissn=1742-3406&rft_id=info:doi/10.1093/rpd/ncz093&rft_dat=%3Coup_cross%3E10.1093/rpd/ncz093%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31038704&rft_oup_id=10.1093/rpd/ncz093&rfr_iscdi=true