How to Talk When a Machine Is Listening: Corporate Disclosure in the Age of AI
Abstract Growing AI readership (proxied for by machine downloads and ownership by AI-equipped investors) motivates firms to prepare filings friendlier to machine processing and to mitigate linguistic tones that are unfavorably perceived by algorithms. Loughran and McDonald (2011) and BERT available...
Gespeichert in:
Veröffentlicht in: | The Review of financial studies 2023-09, Vol.36 (9), p.3603-3642 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3642 |
---|---|
container_issue | 9 |
container_start_page | 3603 |
container_title | The Review of financial studies |
container_volume | 36 |
creator | Cao, Sean Jiang, Wei Yang, Baozhong Zhang, Alan L |
description | Abstract
Growing AI readership (proxied for by machine downloads and ownership by AI-equipped investors) motivates firms to prepare filings friendlier to machine processing and to mitigate linguistic tones that are unfavorably perceived by algorithms. Loughran and McDonald (2011) and BERT available since 2018 serve as event studies supporting attribution of the decrease in the measured negative sentiment to increased machine readership. This relationship is stronger among firms with higher benefits to (e.g., external financing needs) or lower cost (e.g., litigation risk) of sentiment management. This is the first study exploring the feedback effect on corporate disclosure in response to technology.
Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online. |
doi_str_mv | 10.1093/rfs/hhad021 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_rfs_hhad021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/rfs/hhad021</oup_id><sourcerecordid>10.1093/rfs/hhad021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-a408e1b4d642bb34249504042ee77020da2edfdd8c7e1093fd7ab9dfe1e8b1fe3</originalsourceid><addsrcrecordid>eNp90DFPwzAQBWALgUQpTPyBm1hQ6NlxEoetKoVWKrAUMUZOfG4MJa7sVIh_T6tWYmO65bsnvcfYNcc7jmU6CjaO2lYbFPyEDbjMs6RIc3XKBqjKNCllJs_ZRYwfiMhTiQP2MvPf0HtY6vUnvLfUgYZn3bSuI5hHWLjYU-e61T1MfNj4oHuCBxebtY_bQOA66FuC8YrAWxjPL9mZ1etIV8c7ZG-P0-Vklixen-aT8SJp0pL3iZaoiNfS5FLUdSqFLDOUKAVRUaBAowUZa4xqCtoXs6bQdWkscVI1t5QO2e0htwk-xkC22gT3pcNPxbHaf1S7KarjFDsNB02N71z8sypTKHPB9-TmQPx282_WLxVaaWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>How to Talk When a Machine Is Listening: Corporate Disclosure in the Age of AI</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Business Source Complete</source><creator>Cao, Sean ; Jiang, Wei ; Yang, Baozhong ; Zhang, Alan L</creator><creatorcontrib>Cao, Sean ; Jiang, Wei ; Yang, Baozhong ; Zhang, Alan L</creatorcontrib><description>Abstract
Growing AI readership (proxied for by machine downloads and ownership by AI-equipped investors) motivates firms to prepare filings friendlier to machine processing and to mitigate linguistic tones that are unfavorably perceived by algorithms. Loughran and McDonald (2011) and BERT available since 2018 serve as event studies supporting attribution of the decrease in the measured negative sentiment to increased machine readership. This relationship is stronger among firms with higher benefits to (e.g., external financing needs) or lower cost (e.g., litigation risk) of sentiment management. This is the first study exploring the feedback effect on corporate disclosure in response to technology.
Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</description><identifier>ISSN: 0893-9454</identifier><identifier>EISSN: 1465-7368</identifier><identifier>DOI: 10.1093/rfs/hhad021</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Künstliche Intelligenz ; Unternehmenspublizität</subject><ispartof>The Review of financial studies, 2023-09, Vol.36 (9), p.3603-3642</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com . 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-a408e1b4d642bb34249504042ee77020da2edfdd8c7e1093fd7ab9dfe1e8b1fe3</citedby><cites>FETCH-LOGICAL-c391t-a408e1b4d642bb34249504042ee77020da2edfdd8c7e1093fd7ab9dfe1e8b1fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><creatorcontrib>Cao, Sean</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Yang, Baozhong</creatorcontrib><creatorcontrib>Zhang, Alan L</creatorcontrib><title>How to Talk When a Machine Is Listening: Corporate Disclosure in the Age of AI</title><title>The Review of financial studies</title><description>Abstract
Growing AI readership (proxied for by machine downloads and ownership by AI-equipped investors) motivates firms to prepare filings friendlier to machine processing and to mitigate linguistic tones that are unfavorably perceived by algorithms. Loughran and McDonald (2011) and BERT available since 2018 serve as event studies supporting attribution of the decrease in the measured negative sentiment to increased machine readership. This relationship is stronger among firms with higher benefits to (e.g., external financing needs) or lower cost (e.g., litigation risk) of sentiment management. This is the first study exploring the feedback effect on corporate disclosure in response to technology.
Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</description><subject>Künstliche Intelligenz</subject><subject>Unternehmenspublizität</subject><issn>0893-9454</issn><issn>1465-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90DFPwzAQBWALgUQpTPyBm1hQ6NlxEoetKoVWKrAUMUZOfG4MJa7sVIh_T6tWYmO65bsnvcfYNcc7jmU6CjaO2lYbFPyEDbjMs6RIc3XKBqjKNCllJs_ZRYwfiMhTiQP2MvPf0HtY6vUnvLfUgYZn3bSuI5hHWLjYU-e61T1MfNj4oHuCBxebtY_bQOA66FuC8YrAWxjPL9mZ1etIV8c7ZG-P0-Vklixen-aT8SJp0pL3iZaoiNfS5FLUdSqFLDOUKAVRUaBAowUZa4xqCtoXs6bQdWkscVI1t5QO2e0htwk-xkC22gT3pcNPxbHaf1S7KarjFDsNB02N71z8sypTKHPB9-TmQPx282_WLxVaaWI</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Cao, Sean</creator><creator>Jiang, Wei</creator><creator>Yang, Baozhong</creator><creator>Zhang, Alan L</creator><general>Oxford University Press</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>How to Talk When a Machine Is Listening: Corporate Disclosure in the Age of AI</title><author>Cao, Sean ; Jiang, Wei ; Yang, Baozhong ; Zhang, Alan L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-a408e1b4d642bb34249504042ee77020da2edfdd8c7e1093fd7ab9dfe1e8b1fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Künstliche Intelligenz</topic><topic>Unternehmenspublizität</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Sean</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Yang, Baozhong</creatorcontrib><creatorcontrib>Zhang, Alan L</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>The Review of financial studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Sean</au><au>Jiang, Wei</au><au>Yang, Baozhong</au><au>Zhang, Alan L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Talk When a Machine Is Listening: Corporate Disclosure in the Age of AI</atitle><jtitle>The Review of financial studies</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>36</volume><issue>9</issue><spage>3603</spage><epage>3642</epage><pages>3603-3642</pages><issn>0893-9454</issn><eissn>1465-7368</eissn><abstract>Abstract
Growing AI readership (proxied for by machine downloads and ownership by AI-equipped investors) motivates firms to prepare filings friendlier to machine processing and to mitigate linguistic tones that are unfavorably perceived by algorithms. Loughran and McDonald (2011) and BERT available since 2018 serve as event studies supporting attribution of the decrease in the measured negative sentiment to increased machine readership. This relationship is stronger among firms with higher benefits to (e.g., external financing needs) or lower cost (e.g., litigation risk) of sentiment management. This is the first study exploring the feedback effect on corporate disclosure in response to technology.
Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</abstract><pub>Oxford University Press</pub><doi>10.1093/rfs/hhad021</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-9454 |
ispartof | The Review of financial studies, 2023-09, Vol.36 (9), p.3603-3642 |
issn | 0893-9454 1465-7368 |
language | eng |
recordid | cdi_crossref_primary_10_1093_rfs_hhad021 |
source | Oxford University Press Journals All Titles (1996-Current); Business Source Complete |
subjects | Künstliche Intelligenz Unternehmenspublizität |
title | How to Talk When a Machine Is Listening: Corporate Disclosure in the Age of AI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Talk%20When%20a%20Machine%20Is%20Listening:%20Corporate%20Disclosure%20in%20the%20Age%20of%20AI&rft.jtitle=The%20Review%20of%20financial%20studies&rft.au=Cao,%20Sean&rft.date=2023-09-01&rft.volume=36&rft.issue=9&rft.spage=3603&rft.epage=3642&rft.pages=3603-3642&rft.issn=0893-9454&rft.eissn=1465-7368&rft_id=info:doi/10.1093/rfs/hhad021&rft_dat=%3Coup_cross%3E10.1093/rfs/hhad021%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/rfs/hhad021&rfr_iscdi=true |