Predicting Returns Out of Sample: A Naïve Model Averaging Approach

Abstract We propose a naïve model averaging (NMA) method that averages the OLS out-of-sample forecasts and the historical means and produces mostly positive out-of-sample R2s for the variables significant in sample in forecasting market returns. Surprisingly, more sophisticated weighting schemes tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of asset pricing studies 2023-08, Vol.13 (3), p.579-614
Hauptverfasser: Chen, Huafeng (Jason), Jiang, Liang, Liu, Weiwei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 3
container_start_page 579
container_title Review of asset pricing studies
container_volume 13
creator Chen, Huafeng (Jason)
Jiang, Liang
Liu, Weiwei
description Abstract We propose a naïve model averaging (NMA) method that averages the OLS out-of-sample forecasts and the historical means and produces mostly positive out-of-sample R2s for the variables significant in sample in forecasting market returns. Surprisingly, more sophisticated weighting schemes that combine the predictive variable and historical mean do not consistently perform better. With unstable economic relations and a limited sample size, sophisticated methods may lead to overfitting or be subject to more estimation errors. In such situations, our simple methods may work better. Model misspecification, rather than declining return predictability, likely explains the predictive performance of the NMA method. (JEL G12, G11) Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.
doi_str_mv 10.1093/rapstu/raac021
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_rapstu_raac021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/rapstu/raac021</oup_id><sourcerecordid>10.1093/rapstu/raac021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-725bbf789d21d3e42ed9417373b350618d68e9971e87c35dfbb8a997d7efe4f43</originalsourceid><addsrcrecordid>eNqFkMtOwzAURC0EElXplrW3LFL8SmyziypeUqGIxzpy7OsS1CaRnVTiq_gIfoxUqWDJ3cwd6cwsBqFzSuaUaH4ZTBu7fhBjCaNHaMKISBOtuT7-_Rk5RbMYP8hwGUmFyiZo8RTAVbar6jV-hq4PdcSrvsONxy9m227gCuf40Xx_7QA_NA42ON9BMOs9n7dtaIx9P0Mn3mwizA46RW8316-Lu2S5ur1f5MvEMs27RLK0LL1U2jHqOAgGTgsqueQlT0lGlcsUaC0pKGl56nxZKjN4J8GD8IJP0XzstaGJMYAv2lBtTfgsKCn2KxTjCsVhhSGAxwDYpq7iH65SRYRQXA_IxYg0fftf3Q-gbmsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting Returns Out of Sample: A Naïve Model Averaging Approach</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Chen, Huafeng (Jason) ; Jiang, Liang ; Liu, Weiwei</creator><contributor>Chen, Hui</contributor><creatorcontrib>Chen, Huafeng (Jason) ; Jiang, Liang ; Liu, Weiwei ; Chen, Hui</creatorcontrib><description>Abstract We propose a naïve model averaging (NMA) method that averages the OLS out-of-sample forecasts and the historical means and produces mostly positive out-of-sample R2s for the variables significant in sample in forecasting market returns. Surprisingly, more sophisticated weighting schemes that combine the predictive variable and historical mean do not consistently perform better. With unstable economic relations and a limited sample size, sophisticated methods may lead to overfitting or be subject to more estimation errors. In such situations, our simple methods may work better. Model misspecification, rather than declining return predictability, likely explains the predictive performance of the NMA method. (JEL G12, G11) Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</description><identifier>ISSN: 2045-9920</identifier><identifier>EISSN: 2045-9939</identifier><identifier>DOI: 10.1093/rapstu/raac021</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Review of asset pricing studies, 2023-08, Vol.13 (3), p.579-614</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For permissions, please email: journals.permissions@oup.com 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-725bbf789d21d3e42ed9417373b350618d68e9971e87c35dfbb8a997d7efe4f43</citedby><cites>FETCH-LOGICAL-c293t-725bbf789d21d3e42ed9417373b350618d68e9971e87c35dfbb8a997d7efe4f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><contributor>Chen, Hui</contributor><creatorcontrib>Chen, Huafeng (Jason)</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Liu, Weiwei</creatorcontrib><title>Predicting Returns Out of Sample: A Naïve Model Averaging Approach</title><title>Review of asset pricing studies</title><description>Abstract We propose a naïve model averaging (NMA) method that averages the OLS out-of-sample forecasts and the historical means and produces mostly positive out-of-sample R2s for the variables significant in sample in forecasting market returns. Surprisingly, more sophisticated weighting schemes that combine the predictive variable and historical mean do not consistently perform better. With unstable economic relations and a limited sample size, sophisticated methods may lead to overfitting or be subject to more estimation errors. In such situations, our simple methods may work better. Model misspecification, rather than declining return predictability, likely explains the predictive performance of the NMA method. (JEL G12, G11) Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</description><issn>2045-9920</issn><issn>2045-9939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAURC0EElXplrW3LFL8SmyziypeUqGIxzpy7OsS1CaRnVTiq_gIfoxUqWDJ3cwd6cwsBqFzSuaUaH4ZTBu7fhBjCaNHaMKISBOtuT7-_Rk5RbMYP8hwGUmFyiZo8RTAVbar6jV-hq4PdcSrvsONxy9m227gCuf40Xx_7QA_NA42ON9BMOs9n7dtaIx9P0Mn3mwizA46RW8316-Lu2S5ur1f5MvEMs27RLK0LL1U2jHqOAgGTgsqueQlT0lGlcsUaC0pKGl56nxZKjN4J8GD8IJP0XzstaGJMYAv2lBtTfgsKCn2KxTjCsVhhSGAxwDYpq7iH65SRYRQXA_IxYg0fftf3Q-gbmsc</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Chen, Huafeng (Jason)</creator><creator>Jiang, Liang</creator><creator>Liu, Weiwei</creator><general>Oxford University Press</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230817</creationdate><title>Predicting Returns Out of Sample: A Naïve Model Averaging Approach</title><author>Chen, Huafeng (Jason) ; Jiang, Liang ; Liu, Weiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-725bbf789d21d3e42ed9417373b350618d68e9971e87c35dfbb8a997d7efe4f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huafeng (Jason)</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Liu, Weiwei</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Review of asset pricing studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huafeng (Jason)</au><au>Jiang, Liang</au><au>Liu, Weiwei</au><au>Chen, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Returns Out of Sample: A Naïve Model Averaging Approach</atitle><jtitle>Review of asset pricing studies</jtitle><date>2023-08-17</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>579</spage><epage>614</epage><pages>579-614</pages><issn>2045-9920</issn><eissn>2045-9939</eissn><abstract>Abstract We propose a naïve model averaging (NMA) method that averages the OLS out-of-sample forecasts and the historical means and produces mostly positive out-of-sample R2s for the variables significant in sample in forecasting market returns. Surprisingly, more sophisticated weighting schemes that combine the predictive variable and historical mean do not consistently perform better. With unstable economic relations and a limited sample size, sophisticated methods may lead to overfitting or be subject to more estimation errors. In such situations, our simple methods may work better. Model misspecification, rather than declining return predictability, likely explains the predictive performance of the NMA method. (JEL G12, G11) Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</abstract><pub>Oxford University Press</pub><doi>10.1093/rapstu/raac021</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2045-9920
ispartof Review of asset pricing studies, 2023-08, Vol.13 (3), p.579-614
issn 2045-9920
2045-9939
language eng
recordid cdi_crossref_primary_10_1093_rapstu_raac021
source Oxford University Press Journals All Titles (1996-Current)
title Predicting Returns Out of Sample: A Naïve Model Averaging Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Returns%20Out%20of%20Sample:%20A%20Na%C3%AFve%20Model%20Averaging%20Approach&rft.jtitle=Review%20of%20asset%20pricing%20studies&rft.au=Chen,%20Huafeng%20(Jason)&rft.date=2023-08-17&rft.volume=13&rft.issue=3&rft.spage=579&rft.epage=614&rft.pages=579-614&rft.issn=2045-9920&rft.eissn=2045-9939&rft_id=info:doi/10.1093/rapstu/raac021&rft_dat=%3Coup_cross%3E10.1093/rapstu/raac021%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/rapstu/raac021&rfr_iscdi=true