Predicting Returns Out of Sample: A Naïve Model Averaging Approach
Abstract We propose a naïve model averaging (NMA) method that averages the OLS out-of-sample forecasts and the historical means and produces mostly positive out-of-sample R2s for the variables significant in sample in forecasting market returns. Surprisingly, more sophisticated weighting schemes tha...
Gespeichert in:
Veröffentlicht in: | Review of asset pricing studies 2023-08, Vol.13 (3), p.579-614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 3 |
container_start_page | 579 |
container_title | Review of asset pricing studies |
container_volume | 13 |
creator | Chen, Huafeng (Jason) Jiang, Liang Liu, Weiwei |
description | Abstract
We propose a naïve model averaging (NMA) method that averages the OLS out-of-sample forecasts and the historical means and produces mostly positive out-of-sample R2s for the variables significant in sample in forecasting market returns. Surprisingly, more sophisticated weighting schemes that combine the predictive variable and historical mean do not consistently perform better. With unstable economic relations and a limited sample size, sophisticated methods may lead to overfitting or be subject to more estimation errors. In such situations, our simple methods may work better. Model misspecification, rather than declining return predictability, likely explains the predictive performance of the NMA method. (JEL G12, G11)
Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web
site next to the link to the final published paper online. |
doi_str_mv | 10.1093/rapstu/raac021 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_rapstu_raac021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/rapstu/raac021</oup_id><sourcerecordid>10.1093/rapstu/raac021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-725bbf789d21d3e42ed9417373b350618d68e9971e87c35dfbb8a997d7efe4f43</originalsourceid><addsrcrecordid>eNqFkMtOwzAURC0EElXplrW3LFL8SmyziypeUqGIxzpy7OsS1CaRnVTiq_gIfoxUqWDJ3cwd6cwsBqFzSuaUaH4ZTBu7fhBjCaNHaMKISBOtuT7-_Rk5RbMYP8hwGUmFyiZo8RTAVbar6jV-hq4PdcSrvsONxy9m227gCuf40Xx_7QA_NA42ON9BMOs9n7dtaIx9P0Mn3mwizA46RW8316-Lu2S5ur1f5MvEMs27RLK0LL1U2jHqOAgGTgsqueQlT0lGlcsUaC0pKGl56nxZKjN4J8GD8IJP0XzstaGJMYAv2lBtTfgsKCn2KxTjCsVhhSGAxwDYpq7iH65SRYRQXA_IxYg0fftf3Q-gbmsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting Returns Out of Sample: A Naïve Model Averaging Approach</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Chen, Huafeng (Jason) ; Jiang, Liang ; Liu, Weiwei</creator><contributor>Chen, Hui</contributor><creatorcontrib>Chen, Huafeng (Jason) ; Jiang, Liang ; Liu, Weiwei ; Chen, Hui</creatorcontrib><description>Abstract
We propose a naïve model averaging (NMA) method that averages the OLS out-of-sample forecasts and the historical means and produces mostly positive out-of-sample R2s for the variables significant in sample in forecasting market returns. Surprisingly, more sophisticated weighting schemes that combine the predictive variable and historical mean do not consistently perform better. With unstable economic relations and a limited sample size, sophisticated methods may lead to overfitting or be subject to more estimation errors. In such situations, our simple methods may work better. Model misspecification, rather than declining return predictability, likely explains the predictive performance of the NMA method. (JEL G12, G11)
Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web
site next to the link to the final published paper online.</description><identifier>ISSN: 2045-9920</identifier><identifier>EISSN: 2045-9939</identifier><identifier>DOI: 10.1093/rapstu/raac021</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Review of asset pricing studies, 2023-08, Vol.13 (3), p.579-614</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For permissions, please email: journals.permissions@oup.com 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-725bbf789d21d3e42ed9417373b350618d68e9971e87c35dfbb8a997d7efe4f43</citedby><cites>FETCH-LOGICAL-c293t-725bbf789d21d3e42ed9417373b350618d68e9971e87c35dfbb8a997d7efe4f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><contributor>Chen, Hui</contributor><creatorcontrib>Chen, Huafeng (Jason)</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Liu, Weiwei</creatorcontrib><title>Predicting Returns Out of Sample: A Naïve Model Averaging Approach</title><title>Review of asset pricing studies</title><description>Abstract
We propose a naïve model averaging (NMA) method that averages the OLS out-of-sample forecasts and the historical means and produces mostly positive out-of-sample R2s for the variables significant in sample in forecasting market returns. Surprisingly, more sophisticated weighting schemes that combine the predictive variable and historical mean do not consistently perform better. With unstable economic relations and a limited sample size, sophisticated methods may lead to overfitting or be subject to more estimation errors. In such situations, our simple methods may work better. Model misspecification, rather than declining return predictability, likely explains the predictive performance of the NMA method. (JEL G12, G11)
Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web
site next to the link to the final published paper online.</description><issn>2045-9920</issn><issn>2045-9939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAURC0EElXplrW3LFL8SmyziypeUqGIxzpy7OsS1CaRnVTiq_gIfoxUqWDJ3cwd6cwsBqFzSuaUaH4ZTBu7fhBjCaNHaMKISBOtuT7-_Rk5RbMYP8hwGUmFyiZo8RTAVbar6jV-hq4PdcSrvsONxy9m227gCuf40Xx_7QA_NA42ON9BMOs9n7dtaIx9P0Mn3mwizA46RW8316-Lu2S5ur1f5MvEMs27RLK0LL1U2jHqOAgGTgsqueQlT0lGlcsUaC0pKGl56nxZKjN4J8GD8IJP0XzstaGJMYAv2lBtTfgsKCn2KxTjCsVhhSGAxwDYpq7iH65SRYRQXA_IxYg0fftf3Q-gbmsc</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Chen, Huafeng (Jason)</creator><creator>Jiang, Liang</creator><creator>Liu, Weiwei</creator><general>Oxford University Press</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230817</creationdate><title>Predicting Returns Out of Sample: A Naïve Model Averaging Approach</title><author>Chen, Huafeng (Jason) ; Jiang, Liang ; Liu, Weiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-725bbf789d21d3e42ed9417373b350618d68e9971e87c35dfbb8a997d7efe4f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huafeng (Jason)</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Liu, Weiwei</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Review of asset pricing studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huafeng (Jason)</au><au>Jiang, Liang</au><au>Liu, Weiwei</au><au>Chen, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Returns Out of Sample: A Naïve Model Averaging Approach</atitle><jtitle>Review of asset pricing studies</jtitle><date>2023-08-17</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>579</spage><epage>614</epage><pages>579-614</pages><issn>2045-9920</issn><eissn>2045-9939</eissn><abstract>Abstract
We propose a naïve model averaging (NMA) method that averages the OLS out-of-sample forecasts and the historical means and produces mostly positive out-of-sample R2s for the variables significant in sample in forecasting market returns. Surprisingly, more sophisticated weighting schemes that combine the predictive variable and historical mean do not consistently perform better. With unstable economic relations and a limited sample size, sophisticated methods may lead to overfitting or be subject to more estimation errors. In such situations, our simple methods may work better. Model misspecification, rather than declining return predictability, likely explains the predictive performance of the NMA method. (JEL G12, G11)
Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web
site next to the link to the final published paper online.</abstract><pub>Oxford University Press</pub><doi>10.1093/rapstu/raac021</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-9920 |
ispartof | Review of asset pricing studies, 2023-08, Vol.13 (3), p.579-614 |
issn | 2045-9920 2045-9939 |
language | eng |
recordid | cdi_crossref_primary_10_1093_rapstu_raac021 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Predicting Returns Out of Sample: A Naïve Model Averaging Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Returns%20Out%20of%20Sample:%20A%20Na%C3%AFve%20Model%20Averaging%20Approach&rft.jtitle=Review%20of%20asset%20pricing%20studies&rft.au=Chen,%20Huafeng%20(Jason)&rft.date=2023-08-17&rft.volume=13&rft.issue=3&rft.spage=579&rft.epage=614&rft.pages=579-614&rft.issn=2045-9920&rft.eissn=2045-9939&rft_id=info:doi/10.1093/rapstu/raac021&rft_dat=%3Coup_cross%3E10.1093/rapstu/raac021%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/rapstu/raac021&rfr_iscdi=true |