The radical of the bidual of a Beurling algebra

Abstract We prove that the bidual of a Beurling algebra on Z, considered as a Banach algebra with the first Arens product, can never be semisimple. We then show that rad(ℓ1(⊕i=1∞Z)′′) contains nilpotent elements of every index. Each of these results settles a question of Dales and Lau. Finally we sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mathematics 2018-09, Vol.69 (3), p.975-993
1. Verfasser: White, Jared T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We prove that the bidual of a Beurling algebra on Z, considered as a Banach algebra with the first Arens product, can never be semisimple. We then show that rad(ℓ1(⊕i=1∞Z)′′) contains nilpotent elements of every index. Each of these results settles a question of Dales and Lau. Finally we show that there exists a weight ω on Z such that the bidual of ℓ1(Z,ω) contains a radical element which is not nilpotent.
ISSN:0033-5606
1464-3847
DOI:10.1093/qmath/hay003