The radical of the bidual of a Beurling algebra
Abstract We prove that the bidual of a Beurling algebra on Z, considered as a Banach algebra with the first Arens product, can never be semisimple. We then show that rad(ℓ1(⊕i=1∞Z)′′) contains nilpotent elements of every index. Each of these results settles a question of Dales and Lau. Finally we sh...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of mathematics 2018-09, Vol.69 (3), p.975-993 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We prove that the bidual of a Beurling algebra on Z, considered as a Banach algebra with the first Arens product, can never be semisimple. We then show that rad(ℓ1(⊕i=1∞Z)′′) contains nilpotent elements of every index. Each of these results settles a question of Dales and Lau. Finally we show that there exists a weight ω on Z such that the bidual of ℓ1(Z,ω) contains a radical element which is not nilpotent. |
---|---|
ISSN: | 0033-5606 1464-3847 |
DOI: | 10.1093/qmath/hay003 |