HKT Manifolds: Hodge Theory, Formality and Balanced Metrics

Let $(M,I,J,K,\Omega)$ be a compact HKT manifold, and let us denote with $\partial$ the conjugate Dolbeault operator with respect to I, $\partial_J:=J^{-1}\overline\partial J$, $\partial^\Lambda:=[\partial,\Lambda]$, where Λ is the adjoint of $L:=\Omega\wedge-$. Under suitable assumptions, we study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mathematics 2024-06, Vol.75 (2), p.413-435
Hauptverfasser: Gentili, Giovanni, Tardini, Nicoletta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 2
container_start_page 413
container_title Quarterly journal of mathematics
container_volume 75
creator Gentili, Giovanni
Tardini, Nicoletta
description Let $(M,I,J,K,\Omega)$ be a compact HKT manifold, and let us denote with $\partial$ the conjugate Dolbeault operator with respect to I, $\partial_J:=J^{-1}\overline\partial J$, $\partial^\Lambda:=[\partial,\Lambda]$, where Λ is the adjoint of $L:=\Omega\wedge-$. Under suitable assumptions, we study Hodge theory for the complexes $(A^{\bullet,0},\partial,\partial_J)$ and $(A^{\bullet,0},\partial,\partial^\Lambda)$ showing a similar behavior to Kähler manifolds. In particular, several relations among the Laplacians, the spaces of harmonic forms and the associated cohomology groups, together with Hard Lefschetz properties, are proved. Moreover, we show that for a compact HKT $\mathrm{SL}(n,\mathbb{H})$-manifold, the differential graded algebra $(A^{\bullet,0},\partial)$ is formal and this will lead to an obstruction for the existence of an HKT $\mathrm{SL}(n,\mathbb{H})$ structure $(I,J,K,\Omega)$ on a compact complex manifold (M, I). Finally, balanced HKT structures on solvmanifolds are studied.
doi_str_mv 10.1093/qmath/haae013
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_qmath_haae013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_qmath_haae013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c123t-5bff9ce82c0c4cfaa0d6f15439b60f695c8aca4bdc399ae369bfb2f11aecd1553</originalsourceid><addsrcrecordid>eNotz7tOwzAUgGELgUQojOx-AEzt-NIYJqgoQbRiCXN0cmyToFzAzpK3R0Cnf_ulj5BrwW8Ft3L9PcDcrlsAz4U8IZlQRjFZqM0pyTiXkmnDzTm5SOmTc2FUscnIffla0QOMXZh6l-5oObkPT6vWT3G5obspDtB380JhdPQRehjRO3rwc-wwXZKzAH3yV8euyPvuqdqWbP_2_LJ92DMUuZyZbkKw6IscOSoMANyZILSStjE8GKuxAATVOJTWgpfGNqHJgxDg0Qmt5Yqw_y_GKaXoQ_0VuwHiUgte_8rrP3l9lMsfzw1OnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HKT Manifolds: Hodge Theory, Formality and Balanced Metrics</title><source>AUTh Library subscriptions: Oxford University Press</source><creator>Gentili, Giovanni ; Tardini, Nicoletta</creator><creatorcontrib>Gentili, Giovanni ; Tardini, Nicoletta</creatorcontrib><description>Let $(M,I,J,K,\Omega)$ be a compact HKT manifold, and let us denote with $\partial$ the conjugate Dolbeault operator with respect to I, $\partial_J:=J^{-1}\overline\partial J$, $\partial^\Lambda:=[\partial,\Lambda]$, where Λ is the adjoint of $L:=\Omega\wedge-$. Under suitable assumptions, we study Hodge theory for the complexes $(A^{\bullet,0},\partial,\partial_J)$ and $(A^{\bullet,0},\partial,\partial^\Lambda)$ showing a similar behavior to Kähler manifolds. In particular, several relations among the Laplacians, the spaces of harmonic forms and the associated cohomology groups, together with Hard Lefschetz properties, are proved. Moreover, we show that for a compact HKT $\mathrm{SL}(n,\mathbb{H})$-manifold, the differential graded algebra $(A^{\bullet,0},\partial)$ is formal and this will lead to an obstruction for the existence of an HKT $\mathrm{SL}(n,\mathbb{H})$ structure $(I,J,K,\Omega)$ on a compact complex manifold (M, I). Finally, balanced HKT structures on solvmanifolds are studied.</description><identifier>ISSN: 0033-5606</identifier><identifier>EISSN: 1464-3847</identifier><identifier>DOI: 10.1093/qmath/haae013</identifier><language>eng</language><ispartof>Quarterly journal of mathematics, 2024-06, Vol.75 (2), p.413-435</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c123t-5bff9ce82c0c4cfaa0d6f15439b60f695c8aca4bdc399ae369bfb2f11aecd1553</cites><orcidid>0000-0003-2755-2350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gentili, Giovanni</creatorcontrib><creatorcontrib>Tardini, Nicoletta</creatorcontrib><title>HKT Manifolds: Hodge Theory, Formality and Balanced Metrics</title><title>Quarterly journal of mathematics</title><description>Let $(M,I,J,K,\Omega)$ be a compact HKT manifold, and let us denote with $\partial$ the conjugate Dolbeault operator with respect to I, $\partial_J:=J^{-1}\overline\partial J$, $\partial^\Lambda:=[\partial,\Lambda]$, where Λ is the adjoint of $L:=\Omega\wedge-$. Under suitable assumptions, we study Hodge theory for the complexes $(A^{\bullet,0},\partial,\partial_J)$ and $(A^{\bullet,0},\partial,\partial^\Lambda)$ showing a similar behavior to Kähler manifolds. In particular, several relations among the Laplacians, the spaces of harmonic forms and the associated cohomology groups, together with Hard Lefschetz properties, are proved. Moreover, we show that for a compact HKT $\mathrm{SL}(n,\mathbb{H})$-manifold, the differential graded algebra $(A^{\bullet,0},\partial)$ is formal and this will lead to an obstruction for the existence of an HKT $\mathrm{SL}(n,\mathbb{H})$ structure $(I,J,K,\Omega)$ on a compact complex manifold (M, I). Finally, balanced HKT structures on solvmanifolds are studied.</description><issn>0033-5606</issn><issn>1464-3847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotz7tOwzAUgGELgUQojOx-AEzt-NIYJqgoQbRiCXN0cmyToFzAzpK3R0Cnf_ulj5BrwW8Ft3L9PcDcrlsAz4U8IZlQRjFZqM0pyTiXkmnDzTm5SOmTc2FUscnIffla0QOMXZh6l-5oObkPT6vWT3G5obspDtB380JhdPQRehjRO3rwc-wwXZKzAH3yV8euyPvuqdqWbP_2_LJ92DMUuZyZbkKw6IscOSoMANyZILSStjE8GKuxAATVOJTWgpfGNqHJgxDg0Qmt5Yqw_y_GKaXoQ_0VuwHiUgte_8rrP3l9lMsfzw1OnQ</recordid><startdate>20240619</startdate><enddate>20240619</enddate><creator>Gentili, Giovanni</creator><creator>Tardini, Nicoletta</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2755-2350</orcidid></search><sort><creationdate>20240619</creationdate><title>HKT Manifolds: Hodge Theory, Formality and Balanced Metrics</title><author>Gentili, Giovanni ; Tardini, Nicoletta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c123t-5bff9ce82c0c4cfaa0d6f15439b60f695c8aca4bdc399ae369bfb2f11aecd1553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gentili, Giovanni</creatorcontrib><creatorcontrib>Tardini, Nicoletta</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gentili, Giovanni</au><au>Tardini, Nicoletta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HKT Manifolds: Hodge Theory, Formality and Balanced Metrics</atitle><jtitle>Quarterly journal of mathematics</jtitle><date>2024-06-19</date><risdate>2024</risdate><volume>75</volume><issue>2</issue><spage>413</spage><epage>435</epage><pages>413-435</pages><issn>0033-5606</issn><eissn>1464-3847</eissn><abstract>Let $(M,I,J,K,\Omega)$ be a compact HKT manifold, and let us denote with $\partial$ the conjugate Dolbeault operator with respect to I, $\partial_J:=J^{-1}\overline\partial J$, $\partial^\Lambda:=[\partial,\Lambda]$, where Λ is the adjoint of $L:=\Omega\wedge-$. Under suitable assumptions, we study Hodge theory for the complexes $(A^{\bullet,0},\partial,\partial_J)$ and $(A^{\bullet,0},\partial,\partial^\Lambda)$ showing a similar behavior to Kähler manifolds. In particular, several relations among the Laplacians, the spaces of harmonic forms and the associated cohomology groups, together with Hard Lefschetz properties, are proved. Moreover, we show that for a compact HKT $\mathrm{SL}(n,\mathbb{H})$-manifold, the differential graded algebra $(A^{\bullet,0},\partial)$ is formal and this will lead to an obstruction for the existence of an HKT $\mathrm{SL}(n,\mathbb{H})$ structure $(I,J,K,\Omega)$ on a compact complex manifold (M, I). Finally, balanced HKT structures on solvmanifolds are studied.</abstract><doi>10.1093/qmath/haae013</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2755-2350</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-5606
ispartof Quarterly journal of mathematics, 2024-06, Vol.75 (2), p.413-435
issn 0033-5606
1464-3847
language eng
recordid cdi_crossref_primary_10_1093_qmath_haae013
source AUTh Library subscriptions: Oxford University Press
title HKT Manifolds: Hodge Theory, Formality and Balanced Metrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HKT%20Manifolds:%20Hodge%20Theory,%20Formality%20and%20Balanced%20Metrics&rft.jtitle=Quarterly%20journal%20of%20mathematics&rft.au=Gentili,%20Giovanni&rft.date=2024-06-19&rft.volume=75&rft.issue=2&rft.spage=413&rft.epage=435&rft.pages=413-435&rft.issn=0033-5606&rft.eissn=1464-3847&rft_id=info:doi/10.1093/qmath/haae013&rft_dat=%3Ccrossref%3E10_1093_qmath_haae013%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true