Singmaster’s Conjecture In The Interior Of Pascal’s Triangle
Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this pa...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of mathematics 2022-09, Vol.73 (3), p.1137-1177 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1177 |
---|---|
container_issue | 3 |
container_start_page | 1137 |
container_title | Quarterly journal of mathematics |
container_volume | 73 |
creator | Matomäki, Kaisa Radziwiłł, Maksym Shao, Xuancheng Tao, Terence Teräväinen, Joni |
description | Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial. |
doi_str_mv | 10.1093/qmath/haac006 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_qmath_haac006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_qmath_haac006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-ffe0dc6876f50878fe7d613577c99ce8c7de658be19adeb6964cf8e9663d59783</originalsourceid><addsrcrecordid>eNotj71OwzAURi0EEqEwsucFTK9xcm1voAhopUpFIsyR61w3qfIDdhjYeA1ejyeBlk5n-D4d6TB2LeBGgJHz995Ozbyx1gHgCUtEhhmXOlOnLAGQkucIeM4uYtwBCMy0StjdSztsexsnCj9f3zEtxmFHbvoIlC6HtGz2-NvaMaRrnz7b6Gx3OJahtcO2o0t25m0X6erIGXt9fCiLBV-tn5bF_Yq7W6km7j1B7VAr9DlopT2pGoXMlXLGONJO1YS53pAwtqYNGsyc12QQZZ0bpeWM8X-vC2OMgXz1Ftrehs9KQLXPrw751TFf_gI2qVIG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Singmaster’s Conjecture In The Interior Of Pascal’s Triangle</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Matomäki, Kaisa ; Radziwiłł, Maksym ; Shao, Xuancheng ; Tao, Terence ; Teräväinen, Joni</creator><creatorcontrib>Matomäki, Kaisa ; Radziwiłł, Maksym ; Shao, Xuancheng ; Tao, Terence ; Teräväinen, Joni</creatorcontrib><description>Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial.</description><identifier>ISSN: 0033-5606</identifier><identifier>EISSN: 1464-3847</identifier><identifier>DOI: 10.1093/qmath/haac006</identifier><language>eng</language><ispartof>Quarterly journal of mathematics, 2022-09, Vol.73 (3), p.1137-1177</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-ffe0dc6876f50878fe7d613577c99ce8c7de658be19adeb6964cf8e9663d59783</citedby><cites>FETCH-LOGICAL-c237t-ffe0dc6876f50878fe7d613577c99ce8c7de658be19adeb6964cf8e9663d59783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Matomäki, Kaisa</creatorcontrib><creatorcontrib>Radziwiłł, Maksym</creatorcontrib><creatorcontrib>Shao, Xuancheng</creatorcontrib><creatorcontrib>Tao, Terence</creatorcontrib><creatorcontrib>Teräväinen, Joni</creatorcontrib><title>Singmaster’s Conjecture In The Interior Of Pascal’s Triangle</title><title>Quarterly journal of mathematics</title><description>Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial.</description><issn>0033-5606</issn><issn>1464-3847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotj71OwzAURi0EEqEwsucFTK9xcm1voAhopUpFIsyR61w3qfIDdhjYeA1ejyeBlk5n-D4d6TB2LeBGgJHz995Ozbyx1gHgCUtEhhmXOlOnLAGQkucIeM4uYtwBCMy0StjdSztsexsnCj9f3zEtxmFHbvoIlC6HtGz2-NvaMaRrnz7b6Gx3OJahtcO2o0t25m0X6erIGXt9fCiLBV-tn5bF_Yq7W6km7j1B7VAr9DlopT2pGoXMlXLGONJO1YS53pAwtqYNGsyc12QQZZ0bpeWM8X-vC2OMgXz1Ftrehs9KQLXPrw751TFf_gI2qVIG</recordid><startdate>20220910</startdate><enddate>20220910</enddate><creator>Matomäki, Kaisa</creator><creator>Radziwiłł, Maksym</creator><creator>Shao, Xuancheng</creator><creator>Tao, Terence</creator><creator>Teräväinen, Joni</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220910</creationdate><title>Singmaster’s Conjecture In The Interior Of Pascal’s Triangle</title><author>Matomäki, Kaisa ; Radziwiłł, Maksym ; Shao, Xuancheng ; Tao, Terence ; Teräväinen, Joni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-ffe0dc6876f50878fe7d613577c99ce8c7de658be19adeb6964cf8e9663d59783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matomäki, Kaisa</creatorcontrib><creatorcontrib>Radziwiłł, Maksym</creatorcontrib><creatorcontrib>Shao, Xuancheng</creatorcontrib><creatorcontrib>Tao, Terence</creatorcontrib><creatorcontrib>Teräväinen, Joni</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matomäki, Kaisa</au><au>Radziwiłł, Maksym</au><au>Shao, Xuancheng</au><au>Tao, Terence</au><au>Teräväinen, Joni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singmaster’s Conjecture In The Interior Of Pascal’s Triangle</atitle><jtitle>Quarterly journal of mathematics</jtitle><date>2022-09-10</date><risdate>2022</risdate><volume>73</volume><issue>3</issue><spage>1137</spage><epage>1177</epage><pages>1137-1177</pages><issn>0033-5606</issn><eissn>1464-3847</eissn><abstract>Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial.</abstract><doi>10.1093/qmath/haac006</doi><tpages>41</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-5606 |
ispartof | Quarterly journal of mathematics, 2022-09, Vol.73 (3), p.1137-1177 |
issn | 0033-5606 1464-3847 |
language | eng |
recordid | cdi_crossref_primary_10_1093_qmath_haac006 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Singmaster’s Conjecture In The Interior Of Pascal’s Triangle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singmaster%E2%80%99s%20Conjecture%20In%20The%20Interior%20Of%20Pascal%E2%80%99s%20Triangle&rft.jtitle=Quarterly%20journal%20of%20mathematics&rft.au=Matom%C3%A4ki,%20Kaisa&rft.date=2022-09-10&rft.volume=73&rft.issue=3&rft.spage=1137&rft.epage=1177&rft.pages=1137-1177&rft.issn=0033-5606&rft.eissn=1464-3847&rft_id=info:doi/10.1093/qmath/haac006&rft_dat=%3Ccrossref%3E10_1093_qmath_haac006%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |