Singmaster’s Conjecture In The Interior Of Pascal’s Triangle

Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mathematics 2022-09, Vol.73 (3), p.1137-1177
Hauptverfasser: Matomäki, Kaisa, Radziwiłł, Maksym, Shao, Xuancheng, Tao, Terence, Teräväinen, Joni
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1177
container_issue 3
container_start_page 1137
container_title Quarterly journal of mathematics
container_volume 73
creator Matomäki, Kaisa
Radziwiłł, Maksym
Shao, Xuancheng
Tao, Terence
Teräväinen, Joni
description Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial.
doi_str_mv 10.1093/qmath/haac006
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_qmath_haac006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_qmath_haac006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-ffe0dc6876f50878fe7d613577c99ce8c7de658be19adeb6964cf8e9663d59783</originalsourceid><addsrcrecordid>eNotj71OwzAURi0EEqEwsucFTK9xcm1voAhopUpFIsyR61w3qfIDdhjYeA1ejyeBlk5n-D4d6TB2LeBGgJHz995Ozbyx1gHgCUtEhhmXOlOnLAGQkucIeM4uYtwBCMy0StjdSztsexsnCj9f3zEtxmFHbvoIlC6HtGz2-NvaMaRrnz7b6Gx3OJahtcO2o0t25m0X6erIGXt9fCiLBV-tn5bF_Yq7W6km7j1B7VAr9DlopT2pGoXMlXLGONJO1YS53pAwtqYNGsyc12QQZZ0bpeWM8X-vC2OMgXz1Ftrehs9KQLXPrw751TFf_gI2qVIG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Singmaster’s Conjecture In The Interior Of Pascal’s Triangle</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Matomäki, Kaisa ; Radziwiłł, Maksym ; Shao, Xuancheng ; Tao, Terence ; Teräväinen, Joni</creator><creatorcontrib>Matomäki, Kaisa ; Radziwiłł, Maksym ; Shao, Xuancheng ; Tao, Terence ; Teräväinen, Joni</creatorcontrib><description>Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ &gt; 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial.</description><identifier>ISSN: 0033-5606</identifier><identifier>EISSN: 1464-3847</identifier><identifier>DOI: 10.1093/qmath/haac006</identifier><language>eng</language><ispartof>Quarterly journal of mathematics, 2022-09, Vol.73 (3), p.1137-1177</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-ffe0dc6876f50878fe7d613577c99ce8c7de658be19adeb6964cf8e9663d59783</citedby><cites>FETCH-LOGICAL-c237t-ffe0dc6876f50878fe7d613577c99ce8c7de658be19adeb6964cf8e9663d59783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Matomäki, Kaisa</creatorcontrib><creatorcontrib>Radziwiłł, Maksym</creatorcontrib><creatorcontrib>Shao, Xuancheng</creatorcontrib><creatorcontrib>Tao, Terence</creatorcontrib><creatorcontrib>Teräväinen, Joni</creatorcontrib><title>Singmaster’s Conjecture In The Interior Of Pascal’s Triangle</title><title>Quarterly journal of mathematics</title><description>Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ &gt; 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial.</description><issn>0033-5606</issn><issn>1464-3847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotj71OwzAURi0EEqEwsucFTK9xcm1voAhopUpFIsyR61w3qfIDdhjYeA1ejyeBlk5n-D4d6TB2LeBGgJHz995Ozbyx1gHgCUtEhhmXOlOnLAGQkucIeM4uYtwBCMy0StjdSztsexsnCj9f3zEtxmFHbvoIlC6HtGz2-NvaMaRrnz7b6Gx3OJahtcO2o0t25m0X6erIGXt9fCiLBV-tn5bF_Yq7W6km7j1B7VAr9DlopT2pGoXMlXLGONJO1YS53pAwtqYNGsyc12QQZZ0bpeWM8X-vC2OMgXz1Ftrehs9KQLXPrw751TFf_gI2qVIG</recordid><startdate>20220910</startdate><enddate>20220910</enddate><creator>Matomäki, Kaisa</creator><creator>Radziwiłł, Maksym</creator><creator>Shao, Xuancheng</creator><creator>Tao, Terence</creator><creator>Teräväinen, Joni</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220910</creationdate><title>Singmaster’s Conjecture In The Interior Of Pascal’s Triangle</title><author>Matomäki, Kaisa ; Radziwiłł, Maksym ; Shao, Xuancheng ; Tao, Terence ; Teräväinen, Joni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-ffe0dc6876f50878fe7d613577c99ce8c7de658be19adeb6964cf8e9663d59783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matomäki, Kaisa</creatorcontrib><creatorcontrib>Radziwiłł, Maksym</creatorcontrib><creatorcontrib>Shao, Xuancheng</creatorcontrib><creatorcontrib>Tao, Terence</creatorcontrib><creatorcontrib>Teräväinen, Joni</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matomäki, Kaisa</au><au>Radziwiłł, Maksym</au><au>Shao, Xuancheng</au><au>Tao, Terence</au><au>Teräväinen, Joni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singmaster’s Conjecture In The Interior Of Pascal’s Triangle</atitle><jtitle>Quarterly journal of mathematics</jtitle><date>2022-09-10</date><risdate>2022</risdate><volume>73</volume><issue>3</issue><spage>1137</spage><epage>1177</epage><pages>1137-1177</pages><issn>0033-5606</issn><eissn>1464-3847</eissn><abstract>Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ &gt; 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial.</abstract><doi>10.1093/qmath/haac006</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-5606
ispartof Quarterly journal of mathematics, 2022-09, Vol.73 (3), p.1137-1177
issn 0033-5606
1464-3847
language eng
recordid cdi_crossref_primary_10_1093_qmath_haac006
source Oxford University Press Journals All Titles (1996-Current)
title Singmaster’s Conjecture In The Interior Of Pascal’s Triangle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singmaster%E2%80%99s%20Conjecture%20In%20The%20Interior%20Of%20Pascal%E2%80%99s%20Triangle&rft.jtitle=Quarterly%20journal%20of%20mathematics&rft.au=Matom%C3%A4ki,%20Kaisa&rft.date=2022-09-10&rft.volume=73&rft.issue=3&rft.spage=1137&rft.epage=1177&rft.pages=1137-1177&rft.issn=0033-5606&rft.eissn=1464-3847&rft_id=info:doi/10.1093/qmath/haac006&rft_dat=%3Ccrossref%3E10_1093_qmath_haac006%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true