A Two-Scale Analysis for a Spherical Pendulum with a Vertically Vibrating Pivot

In this article, we consider the behaviour of a simple undamped spherical pendulum subject to high-frequency small amplitude vertical oscillations of its pivot. We use the method of multiple scales to derive an autonomous ordinary differential equation describing the slow time behaviour of the polar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mechanics and applied mathematics 2021-05, Vol.74 (2), p.137-157
1. Verfasser: Grundy, R E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue 2
container_start_page 137
container_title Quarterly journal of mechanics and applied mathematics
container_volume 74
creator Grundy, R E
description In this article, we consider the behaviour of a simple undamped spherical pendulum subject to high-frequency small amplitude vertical oscillations of its pivot. We use the method of multiple scales to derive an autonomous ordinary differential equation describing the slow time behaviour of the polar angle which generalises the Kapitza equation for the plane problem. We analyse the phase plane structure of this equation and show that for a range of parameter values there are conical orbits which lie entirely above the horizontal. Going further, we identify a family of quasi-conical orbits some of which may lie entirely above the pivot and establish that initial conditions can be chosen so that precession is eliminated for these orbits. For the general initial value problem, we show that the leading order solutions for the polar and azimuthal angles diverge significantly from their exact counterparts. However, by consolidating the slow scale error term into the leading order structure we may construct extremely accurate solutions for the slow scale evolution of the system. These solutions, confirmed by exact numerical simulations, show that by suitable choice of initial data orbital precession can be eliminated.
doi_str_mv 10.1093/qjmam/hbaa022
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_qjmam_hbaa022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_qjmam_hbaa022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c167t-bdf1f6eb9da525c08df49cd2bce7afff711f73e08fe64776abe7e296a2406a423</originalsourceid><addsrcrecordid>eNot0DtvwjAYhWGraqVS2rG7_4CLb7GTMUK9ICGBBGWNvjh2Y5QLtUNR_n2hZTrDI53hReiZ0RdGMzH73rfQzuoSgHJ-gyZMKklEmiS3aEKpECRRTN6jhxj3lFIpUzVBqxxvTz3ZGGgszjtoxugjdn3AgDeH2gZ_Fry2XXVsji0--aE-y86G4QLNiHe-DDD47guv_U8_PKI7B020T9edos-31-38gyxX74t5viSGKT2QsnLMKVtmFSQ8MTStnMxMxUtjNTjnNGNOC0tTZ5XUWkFpteWZAi6pAsnFFJH_XxP6GIN1xSH4FsJYMFpcahR_NYprDfELZK9WEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Two-Scale Analysis for a Spherical Pendulum with a Vertically Vibrating Pivot</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Grundy, R E</creator><creatorcontrib>Grundy, R E</creatorcontrib><description>In this article, we consider the behaviour of a simple undamped spherical pendulum subject to high-frequency small amplitude vertical oscillations of its pivot. We use the method of multiple scales to derive an autonomous ordinary differential equation describing the slow time behaviour of the polar angle which generalises the Kapitza equation for the plane problem. We analyse the phase plane structure of this equation and show that for a range of parameter values there are conical orbits which lie entirely above the horizontal. Going further, we identify a family of quasi-conical orbits some of which may lie entirely above the pivot and establish that initial conditions can be chosen so that precession is eliminated for these orbits. For the general initial value problem, we show that the leading order solutions for the polar and azimuthal angles diverge significantly from their exact counterparts. However, by consolidating the slow scale error term into the leading order structure we may construct extremely accurate solutions for the slow scale evolution of the system. These solutions, confirmed by exact numerical simulations, show that by suitable choice of initial data orbital precession can be eliminated.</description><identifier>ISSN: 0033-5614</identifier><identifier>EISSN: 1464-3855</identifier><identifier>DOI: 10.1093/qjmam/hbaa022</identifier><language>eng</language><ispartof>Quarterly journal of mechanics and applied mathematics, 2021-05, Vol.74 (2), p.137-157</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c167t-bdf1f6eb9da525c08df49cd2bce7afff711f73e08fe64776abe7e296a2406a423</citedby><cites>FETCH-LOGICAL-c167t-bdf1f6eb9da525c08df49cd2bce7afff711f73e08fe64776abe7e296a2406a423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grundy, R E</creatorcontrib><title>A Two-Scale Analysis for a Spherical Pendulum with a Vertically Vibrating Pivot</title><title>Quarterly journal of mechanics and applied mathematics</title><description>In this article, we consider the behaviour of a simple undamped spherical pendulum subject to high-frequency small amplitude vertical oscillations of its pivot. We use the method of multiple scales to derive an autonomous ordinary differential equation describing the slow time behaviour of the polar angle which generalises the Kapitza equation for the plane problem. We analyse the phase plane structure of this equation and show that for a range of parameter values there are conical orbits which lie entirely above the horizontal. Going further, we identify a family of quasi-conical orbits some of which may lie entirely above the pivot and establish that initial conditions can be chosen so that precession is eliminated for these orbits. For the general initial value problem, we show that the leading order solutions for the polar and azimuthal angles diverge significantly from their exact counterparts. However, by consolidating the slow scale error term into the leading order structure we may construct extremely accurate solutions for the slow scale evolution of the system. These solutions, confirmed by exact numerical simulations, show that by suitable choice of initial data orbital precession can be eliminated.</description><issn>0033-5614</issn><issn>1464-3855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNot0DtvwjAYhWGraqVS2rG7_4CLb7GTMUK9ICGBBGWNvjh2Y5QLtUNR_n2hZTrDI53hReiZ0RdGMzH73rfQzuoSgHJ-gyZMKklEmiS3aEKpECRRTN6jhxj3lFIpUzVBqxxvTz3ZGGgszjtoxugjdn3AgDeH2gZ_Fry2XXVsji0--aE-y86G4QLNiHe-DDD47guv_U8_PKI7B020T9edos-31-38gyxX74t5viSGKT2QsnLMKVtmFSQ8MTStnMxMxUtjNTjnNGNOC0tTZ5XUWkFpteWZAi6pAsnFFJH_XxP6GIN1xSH4FsJYMFpcahR_NYprDfELZK9WEQ</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Grundy, R E</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210527</creationdate><title>A Two-Scale Analysis for a Spherical Pendulum with a Vertically Vibrating Pivot</title><author>Grundy, R E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c167t-bdf1f6eb9da525c08df49cd2bce7afff711f73e08fe64776abe7e296a2406a423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grundy, R E</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly journal of mechanics and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grundy, R E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Two-Scale Analysis for a Spherical Pendulum with a Vertically Vibrating Pivot</atitle><jtitle>Quarterly journal of mechanics and applied mathematics</jtitle><date>2021-05-27</date><risdate>2021</risdate><volume>74</volume><issue>2</issue><spage>137</spage><epage>157</epage><pages>137-157</pages><issn>0033-5614</issn><eissn>1464-3855</eissn><abstract>In this article, we consider the behaviour of a simple undamped spherical pendulum subject to high-frequency small amplitude vertical oscillations of its pivot. We use the method of multiple scales to derive an autonomous ordinary differential equation describing the slow time behaviour of the polar angle which generalises the Kapitza equation for the plane problem. We analyse the phase plane structure of this equation and show that for a range of parameter values there are conical orbits which lie entirely above the horizontal. Going further, we identify a family of quasi-conical orbits some of which may lie entirely above the pivot and establish that initial conditions can be chosen so that precession is eliminated for these orbits. For the general initial value problem, we show that the leading order solutions for the polar and azimuthal angles diverge significantly from their exact counterparts. However, by consolidating the slow scale error term into the leading order structure we may construct extremely accurate solutions for the slow scale evolution of the system. These solutions, confirmed by exact numerical simulations, show that by suitable choice of initial data orbital precession can be eliminated.</abstract><doi>10.1093/qjmam/hbaa022</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-5614
ispartof Quarterly journal of mechanics and applied mathematics, 2021-05, Vol.74 (2), p.137-157
issn 0033-5614
1464-3855
language eng
recordid cdi_crossref_primary_10_1093_qjmam_hbaa022
source Oxford University Press Journals All Titles (1996-Current)
title A Two-Scale Analysis for a Spherical Pendulum with a Vertically Vibrating Pivot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Two-Scale%20Analysis%20for%20a%20Spherical%20Pendulum%20with%20a%20Vertically%20Vibrating%20Pivot&rft.jtitle=Quarterly%20journal%20of%20mechanics%20and%20applied%20mathematics&rft.au=Grundy,%20R%20E&rft.date=2021-05-27&rft.volume=74&rft.issue=2&rft.spage=137&rft.epage=157&rft.pages=137-157&rft.issn=0033-5614&rft.eissn=1464-3855&rft_id=info:doi/10.1093/qjmam/hbaa022&rft_dat=%3Ccrossref%3E10_1093_qjmam_hbaa022%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true