Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking
We analyze dynamical chiral symmetry breaking (D $\chi $ SB) in the Nambu–Jona-Lasinio model by using the non-perturbative renormalization group equation. The equation takes the form of a two-dimensional partial differential equation for the multi-fermion effective interactions $V(x,t)$ where $x$ is...
Gespeichert in:
Veröffentlicht in: | Progress of theoretical and experimental physics 2014-04, Vol.2014 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Progress of theoretical and experimental physics |
container_volume | 2014 |
creator | Aoki, Ken-Ichi Kumamoto, Shin-Ichiro Sato, Daisuke |
description | We analyze dynamical chiral symmetry breaking (D
$\chi $
SB) in the Nambu–Jona-Lasinio model by using the non-perturbative renormalization group equation. The equation takes the form of a two-dimensional partial differential equation for the multi-fermion effective interactions
$V(x,t)$
where
$x$
is the
$\bar {\psi }\psi $
operator and
$t$
is the logarithm of the renormalization scale. The D
$\chi $
SB occurs due to the quantum corrections, which means it emerges at some finite
$t_{\mathrm {c}}$
while integrating the equation with respect to
$t$
. At
$t_{\rm c}$
some singularities suddenly appear in
$V$
which is compulsory in the spontaneous symmetry breakdown. Therefore there is no solution of the equation beyond
$t_{\mathrm {c}}$
. We newly introduce the notion of a weak solution to get the global solution including the infrared limit
$t \rightarrow \infty $
and investigate its properties. The obtained weak solution is global and unique, and it perfectly describes the physically correct vacuum even in the case of the first order phase transition appearing in a finite-density medium. The key logic of deduction is that the weak solution we defined automatically convexifies the effective potential when treating the singularities. |
doi_str_mv | 10.1093/ptep/ptu039 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ptep_ptu039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ptep/ptu039</oup_id><sourcerecordid>10.1093/ptep/ptu039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-45af4fe602f53c2a2c07282ae9d3a3d4ac3fa36757fdd3194238340d6df986b43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKx78g_k5EWq-Wq7PcriFyx4UTyWNJnsRtukJqlQf71d68GTl3ln4GGGeRA6p-SKkopf9wn6qQyEV0dowUhOMl5RevynP0WrGN8IIZSUJRF0geIryHccfTsk6x32Bqc9YOdd1kNIQ2hksp-AAzgfOtnaL_nD7YIfegwfwzwmjzVEFWwDWI9OdlbJFqu9DVPEsesghRE3Ybpl3e4MnRjZRlj95hK93N0-bx6y7dP94-ZmmynBWMpELo0wUBBmcq6YZIqUbM0kVJpLroVU3EhelHlptOa0EoyvuSC60KZaF43gS3Q571XBxxjA1H2wnQxjTUl9UFYflNWzsom-mOnps3_BbwshcRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Aoki, Ken-Ichi ; Kumamoto, Shin-Ichiro ; Sato, Daisuke</creator><creatorcontrib>Aoki, Ken-Ichi ; Kumamoto, Shin-Ichiro ; Sato, Daisuke</creatorcontrib><description>We analyze dynamical chiral symmetry breaking (D
$\chi $
SB) in the Nambu–Jona-Lasinio model by using the non-perturbative renormalization group equation. The equation takes the form of a two-dimensional partial differential equation for the multi-fermion effective interactions
$V(x,t)$
where
$x$
is the
$\bar {\psi }\psi $
operator and
$t$
is the logarithm of the renormalization scale. The D
$\chi $
SB occurs due to the quantum corrections, which means it emerges at some finite
$t_{\mathrm {c}}$
while integrating the equation with respect to
$t$
. At
$t_{\rm c}$
some singularities suddenly appear in
$V$
which is compulsory in the spontaneous symmetry breakdown. Therefore there is no solution of the equation beyond
$t_{\mathrm {c}}$
. We newly introduce the notion of a weak solution to get the global solution including the infrared limit
$t \rightarrow \infty $
and investigate its properties. The obtained weak solution is global and unique, and it perfectly describes the physically correct vacuum even in the case of the first order phase transition appearing in a finite-density medium. The key logic of deduction is that the weak solution we defined automatically convexifies the effective potential when treating the singularities.</description><identifier>ISSN: 2050-3911</identifier><identifier>EISSN: 2050-3911</identifier><identifier>DOI: 10.1093/ptep/ptu039</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Progress of theoretical and experimental physics, 2014-04, Vol.2014 (4)</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of the Physical Society of Japan. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-45af4fe602f53c2a2c07282ae9d3a3d4ac3fa36757fdd3194238340d6df986b43</citedby><cites>FETCH-LOGICAL-c422t-45af4fe602f53c2a2c07282ae9d3a3d4ac3fa36757fdd3194238340d6df986b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1604,27924,27925</link.rule.ids></links><search><creatorcontrib>Aoki, Ken-Ichi</creatorcontrib><creatorcontrib>Kumamoto, Shin-Ichiro</creatorcontrib><creatorcontrib>Sato, Daisuke</creatorcontrib><title>Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking</title><title>Progress of theoretical and experimental physics</title><description>We analyze dynamical chiral symmetry breaking (D
$\chi $
SB) in the Nambu–Jona-Lasinio model by using the non-perturbative renormalization group equation. The equation takes the form of a two-dimensional partial differential equation for the multi-fermion effective interactions
$V(x,t)$
where
$x$
is the
$\bar {\psi }\psi $
operator and
$t$
is the logarithm of the renormalization scale. The D
$\chi $
SB occurs due to the quantum corrections, which means it emerges at some finite
$t_{\mathrm {c}}$
while integrating the equation with respect to
$t$
. At
$t_{\rm c}$
some singularities suddenly appear in
$V$
which is compulsory in the spontaneous symmetry breakdown. Therefore there is no solution of the equation beyond
$t_{\mathrm {c}}$
. We newly introduce the notion of a weak solution to get the global solution including the infrared limit
$t \rightarrow \infty $
and investigate its properties. The obtained weak solution is global and unique, and it perfectly describes the physically correct vacuum even in the case of the first order phase transition appearing in a finite-density medium. The key logic of deduction is that the weak solution we defined automatically convexifies the effective potential when treating the singularities.</description><issn>2050-3911</issn><issn>2050-3911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kE1LxDAQhoMouKx78g_k5EWq-Wq7PcriFyx4UTyWNJnsRtukJqlQf71d68GTl3ln4GGGeRA6p-SKkopf9wn6qQyEV0dowUhOMl5RevynP0WrGN8IIZSUJRF0geIryHccfTsk6x32Bqc9YOdd1kNIQ2hksp-AAzgfOtnaL_nD7YIfegwfwzwmjzVEFWwDWI9OdlbJFqu9DVPEsesghRE3Ybpl3e4MnRjZRlj95hK93N0-bx6y7dP94-ZmmynBWMpELo0wUBBmcq6YZIqUbM0kVJpLroVU3EhelHlptOa0EoyvuSC60KZaF43gS3Q571XBxxjA1H2wnQxjTUl9UFYflNWzsom-mOnps3_BbwshcRo</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Aoki, Ken-Ichi</creator><creator>Kumamoto, Shin-Ichiro</creator><creator>Sato, Daisuke</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140401</creationdate><title>Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking</title><author>Aoki, Ken-Ichi ; Kumamoto, Shin-Ichiro ; Sato, Daisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-45af4fe602f53c2a2c07282ae9d3a3d4ac3fa36757fdd3194238340d6df986b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoki, Ken-Ichi</creatorcontrib><creatorcontrib>Kumamoto, Shin-Ichiro</creatorcontrib><creatorcontrib>Sato, Daisuke</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Progress of theoretical and experimental physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, Ken-Ichi</au><au>Kumamoto, Shin-Ichiro</au><au>Sato, Daisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking</atitle><jtitle>Progress of theoretical and experimental physics</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>2014</volume><issue>4</issue><issn>2050-3911</issn><eissn>2050-3911</eissn><abstract>We analyze dynamical chiral symmetry breaking (D
$\chi $
SB) in the Nambu–Jona-Lasinio model by using the non-perturbative renormalization group equation. The equation takes the form of a two-dimensional partial differential equation for the multi-fermion effective interactions
$V(x,t)$
where
$x$
is the
$\bar {\psi }\psi $
operator and
$t$
is the logarithm of the renormalization scale. The D
$\chi $
SB occurs due to the quantum corrections, which means it emerges at some finite
$t_{\mathrm {c}}$
while integrating the equation with respect to
$t$
. At
$t_{\rm c}$
some singularities suddenly appear in
$V$
which is compulsory in the spontaneous symmetry breakdown. Therefore there is no solution of the equation beyond
$t_{\mathrm {c}}$
. We newly introduce the notion of a weak solution to get the global solution including the infrared limit
$t \rightarrow \infty $
and investigate its properties. The obtained weak solution is global and unique, and it perfectly describes the physically correct vacuum even in the case of the first order phase transition appearing in a finite-density medium. The key logic of deduction is that the weak solution we defined automatically convexifies the effective potential when treating the singularities.</abstract><pub>Oxford University Press</pub><doi>10.1093/ptep/ptu039</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-3911 |
ispartof | Progress of theoretical and experimental physics, 2014-04, Vol.2014 (4) |
issn | 2050-3911 2050-3911 |
language | eng |
recordid | cdi_crossref_primary_10_1093_ptep_ptu039 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ) |
title | Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20solution%20of%20the%20non-perturbative%20renormalization%20group%20equation%20to%20describe%20dynamical%20chiral%20symmetry%20breaking&rft.jtitle=Progress%20of%20theoretical%20and%20experimental%20physics&rft.au=Aoki,%20Ken-Ichi&rft.date=2014-04-01&rft.volume=2014&rft.issue=4&rft.issn=2050-3911&rft.eissn=2050-3911&rft_id=info:doi/10.1093/ptep/ptu039&rft_dat=%3Coup_cross%3E10.1093/ptep/ptu039%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/ptep/ptu039&rfr_iscdi=true |