Numerical Version of the Complex-Scaling Green’s Operator Method
A new treatment of scattering problems is formulated by improving the complex-scaling Green’s operator (CSGO) method, which can calculate the transition or scattering matrix from the spectral representation of the complex-scaled Green’s function and the asymptotic solution expressed in terms of the...
Gespeichert in:
Veröffentlicht in: | Progress of theoretical and experimental physics 2024-12, Vol.2024 (12) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Progress of theoretical and experimental physics |
container_volume | 2024 |
creator | Yamasaki, N Fumimoto, T Maeda, T Ito, M |
description | A new treatment of scattering problems is formulated by improving the complex-scaling Green’s operator (CSGO) method, which can calculate the transition or scattering matrix from the spectral representation of the complex-scaled Green’s function and the asymptotic solution expressed in terms of the analytic function. In the present formulation, the CSGO method is extended to handle the general scattering problem in charged-particle systems by employing the Coulomb wave function numerically calculated under the complex-scaled asymptotic Hamiltonian. We call the new method the CSGO-numerical (CSGON) method, and it is applied to the scattering problem of the $^4$He + proton system to check its validity. The continuum level density (CLD) method, which is another method to solve the scattering problem, is also applied to the same system. The numerical precision and the applicability of the CSGON method is discussed by comparing it with the CLD and CSGO methods. |
doi_str_mv | 10.1093/ptep/ptae165 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ptep_ptae165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ptep/ptae165</oup_id><sourcerecordid>10.1093/ptep/ptae165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-39f4b82e6e403d71bab42f4af74a7c161113927a15088f6c0ee095fe91883cde3</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EElXpxgN4YyFwFztxMkIFBanQgT9r5DhnGpTEkZ1KsPEavB5PQqp2YGK5O-k-_X7Sx9gpwgVCLi77gfpxaMI0OWCTGBKIRI54-Oc-ZrMQ3gEAQSmQOGHXj5uWfG10w1_Jh9p13Fk-rInPXds39BE9jb-6e-MLT9T9fH0HvurJ68F5_kDD2lUn7MjqJtBsv6fs5fbmeX4XLVeL-_nVMjKYyGHst7LMYkpJgqgUlrqUsZXaKqmVwRQRRR4rjQlkmU0NEEGeWMoxy4SpSEzZ-S7XeBeCJ1v0vm61_ywQiq2CYqug2CsY8bMd7jb9_-Qvcm5erQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Version of the Complex-Scaling Green’s Operator Method</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yamasaki, N ; Fumimoto, T ; Maeda, T ; Ito, M</creator><creatorcontrib>Yamasaki, N ; Fumimoto, T ; Maeda, T ; Ito, M</creatorcontrib><description>A new treatment of scattering problems is formulated by improving the complex-scaling Green’s operator (CSGO) method, which can calculate the transition or scattering matrix from the spectral representation of the complex-scaled Green’s function and the asymptotic solution expressed in terms of the analytic function. In the present formulation, the CSGO method is extended to handle the general scattering problem in charged-particle systems by employing the Coulomb wave function numerically calculated under the complex-scaled asymptotic Hamiltonian. We call the new method the CSGO-numerical (CSGON) method, and it is applied to the scattering problem of the $^4$He + proton system to check its validity. The continuum level density (CLD) method, which is another method to solve the scattering problem, is also applied to the same system. The numerical precision and the applicability of the CSGON method is discussed by comparing it with the CLD and CSGO methods.</description><identifier>ISSN: 2050-3911</identifier><identifier>EISSN: 2050-3911</identifier><identifier>DOI: 10.1093/ptep/ptae165</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Progress of theoretical and experimental physics, 2024-12, Vol.2024 (12)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c154t-39f4b82e6e403d71bab42f4af74a7c161113927a15088f6c0ee095fe91883cde3</cites><orcidid>0000-0003-2085-2158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Yamasaki, N</creatorcontrib><creatorcontrib>Fumimoto, T</creatorcontrib><creatorcontrib>Maeda, T</creatorcontrib><creatorcontrib>Ito, M</creatorcontrib><title>Numerical Version of the Complex-Scaling Green’s Operator Method</title><title>Progress of theoretical and experimental physics</title><description>A new treatment of scattering problems is formulated by improving the complex-scaling Green’s operator (CSGO) method, which can calculate the transition or scattering matrix from the spectral representation of the complex-scaled Green’s function and the asymptotic solution expressed in terms of the analytic function. In the present formulation, the CSGO method is extended to handle the general scattering problem in charged-particle systems by employing the Coulomb wave function numerically calculated under the complex-scaled asymptotic Hamiltonian. We call the new method the CSGO-numerical (CSGON) method, and it is applied to the scattering problem of the $^4$He + proton system to check its validity. The continuum level density (CLD) method, which is another method to solve the scattering problem, is also applied to the same system. The numerical precision and the applicability of the CSGON method is discussed by comparing it with the CLD and CSGO methods.</description><issn>2050-3911</issn><issn>2050-3911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kL9OwzAQhy0EElXpxgN4YyFwFztxMkIFBanQgT9r5DhnGpTEkZ1KsPEavB5PQqp2YGK5O-k-_X7Sx9gpwgVCLi77gfpxaMI0OWCTGBKIRI54-Oc-ZrMQ3gEAQSmQOGHXj5uWfG10w1_Jh9p13Fk-rInPXds39BE9jb-6e-MLT9T9fH0HvurJ68F5_kDD2lUn7MjqJtBsv6fs5fbmeX4XLVeL-_nVMjKYyGHst7LMYkpJgqgUlrqUsZXaKqmVwRQRRR4rjQlkmU0NEEGeWMoxy4SpSEzZ-S7XeBeCJ1v0vm61_ywQiq2CYqug2CsY8bMd7jb9_-Qvcm5erQ</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Yamasaki, N</creator><creator>Fumimoto, T</creator><creator>Maeda, T</creator><creator>Ito, M</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2085-2158</orcidid></search><sort><creationdate>20241209</creationdate><title>Numerical Version of the Complex-Scaling Green’s Operator Method</title><author>Yamasaki, N ; Fumimoto, T ; Maeda, T ; Ito, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-39f4b82e6e403d71bab42f4af74a7c161113927a15088f6c0ee095fe91883cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamasaki, N</creatorcontrib><creatorcontrib>Fumimoto, T</creatorcontrib><creatorcontrib>Maeda, T</creatorcontrib><creatorcontrib>Ito, M</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Progress of theoretical and experimental physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamasaki, N</au><au>Fumimoto, T</au><au>Maeda, T</au><au>Ito, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Version of the Complex-Scaling Green’s Operator Method</atitle><jtitle>Progress of theoretical and experimental physics</jtitle><date>2024-12-09</date><risdate>2024</risdate><volume>2024</volume><issue>12</issue><issn>2050-3911</issn><eissn>2050-3911</eissn><abstract>A new treatment of scattering problems is formulated by improving the complex-scaling Green’s operator (CSGO) method, which can calculate the transition or scattering matrix from the spectral representation of the complex-scaled Green’s function and the asymptotic solution expressed in terms of the analytic function. In the present formulation, the CSGO method is extended to handle the general scattering problem in charged-particle systems by employing the Coulomb wave function numerically calculated under the complex-scaled asymptotic Hamiltonian. We call the new method the CSGO-numerical (CSGON) method, and it is applied to the scattering problem of the $^4$He + proton system to check its validity. The continuum level density (CLD) method, which is another method to solve the scattering problem, is also applied to the same system. The numerical precision and the applicability of the CSGON method is discussed by comparing it with the CLD and CSGO methods.</abstract><pub>Oxford University Press</pub><doi>10.1093/ptep/ptae165</doi><orcidid>https://orcid.org/0000-0003-2085-2158</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-3911 |
ispartof | Progress of theoretical and experimental physics, 2024-12, Vol.2024 (12) |
issn | 2050-3911 2050-3911 |
language | eng |
recordid | cdi_crossref_primary_10_1093_ptep_ptae165 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Numerical Version of the Complex-Scaling Green’s Operator Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Version%20of%20the%20Complex-Scaling%20Green%E2%80%99s%20Operator%20Method&rft.jtitle=Progress%20of%20theoretical%20and%20experimental%20physics&rft.au=Yamasaki,%20N&rft.date=2024-12-09&rft.volume=2024&rft.issue=12&rft.issn=2050-3911&rft.eissn=2050-3911&rft_id=info:doi/10.1093/ptep/ptae165&rft_dat=%3Coup_cross%3E10.1093/ptep/ptae165%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/ptep/ptae165&rfr_iscdi=true |