Numerical Version of the Complex-Scaling Green’s Operator Method

A new treatment of scattering problems is formulated by improving the complex-scaling Green’s operator (CSGO) method, which can calculate the transition or scattering matrix from the spectral representation of the complex-scaled Green’s function and the asymptotic solution expressed in terms of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress of theoretical and experimental physics 2024-12, Vol.2024 (12)
Hauptverfasser: Yamasaki, N, Fumimoto, T, Maeda, T, Ito, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Progress of theoretical and experimental physics
container_volume 2024
creator Yamasaki, N
Fumimoto, T
Maeda, T
Ito, M
description A new treatment of scattering problems is formulated by improving the complex-scaling Green’s operator (CSGO) method, which can calculate the transition or scattering matrix from the spectral representation of the complex-scaled Green’s function and the asymptotic solution expressed in terms of the analytic function. In the present formulation, the CSGO method is extended to handle the general scattering problem in charged-particle systems by employing the Coulomb wave function numerically calculated under the complex-scaled asymptotic Hamiltonian. We call the new method the CSGO-numerical (CSGON) method, and it is applied to the scattering problem of the $^4$He + proton system to check its validity. The continuum level density (CLD) method, which is another method to solve the scattering problem, is also applied to the same system. The numerical precision and the applicability of the CSGON method is discussed by comparing it with the CLD and CSGO methods.
doi_str_mv 10.1093/ptep/ptae165
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ptep_ptae165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ptep/ptae165</oup_id><sourcerecordid>10.1093/ptep/ptae165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-39f4b82e6e403d71bab42f4af74a7c161113927a15088f6c0ee095fe91883cde3</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EElXpxgN4YyFwFztxMkIFBanQgT9r5DhnGpTEkZ1KsPEavB5PQqp2YGK5O-k-_X7Sx9gpwgVCLi77gfpxaMI0OWCTGBKIRI54-Oc-ZrMQ3gEAQSmQOGHXj5uWfG10w1_Jh9p13Fk-rInPXds39BE9jb-6e-MLT9T9fH0HvurJ68F5_kDD2lUn7MjqJtBsv6fs5fbmeX4XLVeL-_nVMjKYyGHst7LMYkpJgqgUlrqUsZXaKqmVwRQRRR4rjQlkmU0NEEGeWMoxy4SpSEzZ-S7XeBeCJ1v0vm61_ywQiq2CYqug2CsY8bMd7jb9_-Qvcm5erQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Version of the Complex-Scaling Green’s Operator Method</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yamasaki, N ; Fumimoto, T ; Maeda, T ; Ito, M</creator><creatorcontrib>Yamasaki, N ; Fumimoto, T ; Maeda, T ; Ito, M</creatorcontrib><description>A new treatment of scattering problems is formulated by improving the complex-scaling Green’s operator (CSGO) method, which can calculate the transition or scattering matrix from the spectral representation of the complex-scaled Green’s function and the asymptotic solution expressed in terms of the analytic function. In the present formulation, the CSGO method is extended to handle the general scattering problem in charged-particle systems by employing the Coulomb wave function numerically calculated under the complex-scaled asymptotic Hamiltonian. We call the new method the CSGO-numerical (CSGON) method, and it is applied to the scattering problem of the $^4$He + proton system to check its validity. The continuum level density (CLD) method, which is another method to solve the scattering problem, is also applied to the same system. The numerical precision and the applicability of the CSGON method is discussed by comparing it with the CLD and CSGO methods.</description><identifier>ISSN: 2050-3911</identifier><identifier>EISSN: 2050-3911</identifier><identifier>DOI: 10.1093/ptep/ptae165</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Progress of theoretical and experimental physics, 2024-12, Vol.2024 (12)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c154t-39f4b82e6e403d71bab42f4af74a7c161113927a15088f6c0ee095fe91883cde3</cites><orcidid>0000-0003-2085-2158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Yamasaki, N</creatorcontrib><creatorcontrib>Fumimoto, T</creatorcontrib><creatorcontrib>Maeda, T</creatorcontrib><creatorcontrib>Ito, M</creatorcontrib><title>Numerical Version of the Complex-Scaling Green’s Operator Method</title><title>Progress of theoretical and experimental physics</title><description>A new treatment of scattering problems is formulated by improving the complex-scaling Green’s operator (CSGO) method, which can calculate the transition or scattering matrix from the spectral representation of the complex-scaled Green’s function and the asymptotic solution expressed in terms of the analytic function. In the present formulation, the CSGO method is extended to handle the general scattering problem in charged-particle systems by employing the Coulomb wave function numerically calculated under the complex-scaled asymptotic Hamiltonian. We call the new method the CSGO-numerical (CSGON) method, and it is applied to the scattering problem of the $^4$He + proton system to check its validity. The continuum level density (CLD) method, which is another method to solve the scattering problem, is also applied to the same system. The numerical precision and the applicability of the CSGON method is discussed by comparing it with the CLD and CSGO methods.</description><issn>2050-3911</issn><issn>2050-3911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kL9OwzAQhy0EElXpxgN4YyFwFztxMkIFBanQgT9r5DhnGpTEkZ1KsPEavB5PQqp2YGK5O-k-_X7Sx9gpwgVCLi77gfpxaMI0OWCTGBKIRI54-Oc-ZrMQ3gEAQSmQOGHXj5uWfG10w1_Jh9p13Fk-rInPXds39BE9jb-6e-MLT9T9fH0HvurJ68F5_kDD2lUn7MjqJtBsv6fs5fbmeX4XLVeL-_nVMjKYyGHst7LMYkpJgqgUlrqUsZXaKqmVwRQRRR4rjQlkmU0NEEGeWMoxy4SpSEzZ-S7XeBeCJ1v0vm61_ywQiq2CYqug2CsY8bMd7jb9_-Qvcm5erQ</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Yamasaki, N</creator><creator>Fumimoto, T</creator><creator>Maeda, T</creator><creator>Ito, M</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2085-2158</orcidid></search><sort><creationdate>20241209</creationdate><title>Numerical Version of the Complex-Scaling Green’s Operator Method</title><author>Yamasaki, N ; Fumimoto, T ; Maeda, T ; Ito, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-39f4b82e6e403d71bab42f4af74a7c161113927a15088f6c0ee095fe91883cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamasaki, N</creatorcontrib><creatorcontrib>Fumimoto, T</creatorcontrib><creatorcontrib>Maeda, T</creatorcontrib><creatorcontrib>Ito, M</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Progress of theoretical and experimental physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamasaki, N</au><au>Fumimoto, T</au><au>Maeda, T</au><au>Ito, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Version of the Complex-Scaling Green’s Operator Method</atitle><jtitle>Progress of theoretical and experimental physics</jtitle><date>2024-12-09</date><risdate>2024</risdate><volume>2024</volume><issue>12</issue><issn>2050-3911</issn><eissn>2050-3911</eissn><abstract>A new treatment of scattering problems is formulated by improving the complex-scaling Green’s operator (CSGO) method, which can calculate the transition or scattering matrix from the spectral representation of the complex-scaled Green’s function and the asymptotic solution expressed in terms of the analytic function. In the present formulation, the CSGO method is extended to handle the general scattering problem in charged-particle systems by employing the Coulomb wave function numerically calculated under the complex-scaled asymptotic Hamiltonian. We call the new method the CSGO-numerical (CSGON) method, and it is applied to the scattering problem of the $^4$He + proton system to check its validity. The continuum level density (CLD) method, which is another method to solve the scattering problem, is also applied to the same system. The numerical precision and the applicability of the CSGON method is discussed by comparing it with the CLD and CSGO methods.</abstract><pub>Oxford University Press</pub><doi>10.1093/ptep/ptae165</doi><orcidid>https://orcid.org/0000-0003-2085-2158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-3911
ispartof Progress of theoretical and experimental physics, 2024-12, Vol.2024 (12)
issn 2050-3911
2050-3911
language eng
recordid cdi_crossref_primary_10_1093_ptep_ptae165
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Numerical Version of the Complex-Scaling Green’s Operator Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Version%20of%20the%20Complex-Scaling%20Green%E2%80%99s%20Operator%20Method&rft.jtitle=Progress%20of%20theoretical%20and%20experimental%20physics&rft.au=Yamasaki,%20N&rft.date=2024-12-09&rft.volume=2024&rft.issue=12&rft.issn=2050-3911&rft.eissn=2050-3911&rft_id=info:doi/10.1093/ptep/ptae165&rft_dat=%3Coup_cross%3E10.1093/ptep/ptae165%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/ptep/ptae165&rfr_iscdi=true