A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets

Mid-frequency band gravitational-wave detectors will be complementary to the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as the Laser Interferometer Space Antenna (LISA), which will be sensitive below around 10 mHz. A ground-based supercondu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress of Theoretical and Experimental Physics 2024-05, Vol.2024 (5), p.1
Hauptverfasser: Bae, Yeong-Bok, Park, Chan, Son, Edwin J, Ahn, Sang-Hyeon, Jeong, Minjoong, Kang, Gungwon, Kim, Chunglee, Kim, Dong Lak, Kim, Jaewan, Kim, Whansun, Lee, Hyung Mok, Lee, Yong-Ho, Norton, Ronald S, Oh, John J, Oh, Sang Hoon, Paik, Ho Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1
container_title Progress of Theoretical and Experimental Physics
container_volume 2024
creator Bae, Yeong-Bok
Park, Chan
Son, Edwin J
Ahn, Sang-Hyeon
Jeong, Minjoong
Kang, Gungwon
Kim, Chunglee
Kim, Dong Lak
Kim, Jaewan
Kim, Whansun
Lee, Hyung Mok
Lee, Yong-Ho
Norton, Ronald S
Oh, John J
Oh, Sang Hoon
Paik, Ho Jung
description Mid-frequency band gravitational-wave detectors will be complementary to the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as the Laser Interferometer Space Antenna (LISA), which will be sensitive below around 10 mHz. A ground-based superconducting omnidirectional gravitational radiation observatory (SOGRO) has recently been proposed along with several design variations for the frequency band of 0.1–10 Hz. For two conceptual designs of SOGRO (i.e. SOGRO and advanced SOGRO [aSOGRO]), we examine their multichannel natures, sensitivities, and science cases. One of the key characteristics of the SOGRO concept is its six detection channels. The response functions of each channel are calculated for all possible gravitational wave (GW) polarizations including scalar and vector modes. Combining these response functions, we also confirm the omnidirectional nature of SOGRO. Hence, even a single SOGRO detector will be able to determine the position of a source and polarizations of GWs, if detected. Taking into account SOGRO’s sensitivity and technical requirements, two main targets are most plausible: GWs from compact binaries and stochastic backgrounds. Based on assumptions we consider in this work, detection rates for intermediate-mass binary black holes (in the mass range of hundreds up to $10^{5}\, M_\odot$) are expected to be 0.0065–8.1 yr−1. In order to detect the stochastic GW background, multiple detectors are required. Two aSOGRO detector networks may be able to put limits on the stochastic background beyond the indirect limit from cosmological observations.
doi_str_mv 10.1093/ptep/ptae045
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ptep_ptae045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A798455742</galeid><oup_id>10.1093/ptep/ptae045</oup_id><sourcerecordid>A798455742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-eb651545868e200c56921cc36a69129e3a755d03ee5c32752c4ca79349a5f8f03</originalsourceid><addsrcrecordid>eNp9ULFOwzAQjRBIVKUbH-CNhYCdxHHMVhVaKrUwUMQYHc6lNUqdYDuVOvHruGoHJnS6u6fTe0-6F0XXjN4xKtP7zmMXBiDN-Fk0SCincSoZO_-DL6ORc1-UUkaFoBkbRD9j8tZ3aFVrql55bdZkhca1ljyiR-UDqEMvdRVPLX73aNSezCzstAevWwMN-YAdugcy944s-8ZrtQFjsCEv4HuLBExFlqANGTtv226zd1oF1QrsGr27ii5qaByOTnsYvU-fVpPnePE6m0_Gi1glUvgYP3POeMaLvMCEUsVzmTCl0hxyyRKJKQjOK5oicpUmgicqUyBkmkngdVHTdBjdHX3X0GCpTd16CypUhVsdnsdah_tYyCLjXGRJENweBcq2zlmsy87qLdh9yWh5CLw8BF6eAg_0myO97bv_mb9bm4QB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bae, Yeong-Bok ; Park, Chan ; Son, Edwin J ; Ahn, Sang-Hyeon ; Jeong, Minjoong ; Kang, Gungwon ; Kim, Chunglee ; Kim, Dong Lak ; Kim, Jaewan ; Kim, Whansun ; Lee, Hyung Mok ; Lee, Yong-Ho ; Norton, Ronald S ; Oh, John J ; Oh, Sang Hoon ; Paik, Ho Jung</creator><creatorcontrib>Bae, Yeong-Bok ; Park, Chan ; Son, Edwin J ; Ahn, Sang-Hyeon ; Jeong, Minjoong ; Kang, Gungwon ; Kim, Chunglee ; Kim, Dong Lak ; Kim, Jaewan ; Kim, Whansun ; Lee, Hyung Mok ; Lee, Yong-Ho ; Norton, Ronald S ; Oh, John J ; Oh, Sang Hoon ; Paik, Ho Jung</creatorcontrib><description>Mid-frequency band gravitational-wave detectors will be complementary to the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as the Laser Interferometer Space Antenna (LISA), which will be sensitive below around 10 mHz. A ground-based superconducting omnidirectional gravitational radiation observatory (SOGRO) has recently been proposed along with several design variations for the frequency band of 0.1–10 Hz. For two conceptual designs of SOGRO (i.e. SOGRO and advanced SOGRO [aSOGRO]), we examine their multichannel natures, sensitivities, and science cases. One of the key characteristics of the SOGRO concept is its six detection channels. The response functions of each channel are calculated for all possible gravitational wave (GW) polarizations including scalar and vector modes. Combining these response functions, we also confirm the omnidirectional nature of SOGRO. Hence, even a single SOGRO detector will be able to determine the position of a source and polarizations of GWs, if detected. Taking into account SOGRO’s sensitivity and technical requirements, two main targets are most plausible: GWs from compact binaries and stochastic backgrounds. Based on assumptions we consider in this work, detection rates for intermediate-mass binary black holes (in the mass range of hundreds up to $10^{5}\, M_\odot$) are expected to be 0.0065–8.1 yr−1. In order to detect the stochastic GW background, multiple detectors are required. Two aSOGRO detector networks may be able to put limits on the stochastic background beyond the indirect limit from cosmological observations.</description><identifier>ISSN: 2050-3911</identifier><identifier>EISSN: 2050-3911</identifier><identifier>DOI: 10.1093/ptep/ptae045</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Antennas (Electronics) ; Detectors ; Superconductors</subject><ispartof>Progress of Theoretical and Experimental Physics, 2024-05, Vol.2024 (5), p.1</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024</rights><rights>COPYRIGHT 2024 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-eb651545868e200c56921cc36a69129e3a755d03ee5c32752c4ca79349a5f8f03</cites><orcidid>0000-0002-9234-362X ; 0000-0003-3093-9206 ; 0000-0003-4412-7161 ; 0000-0001-5417-862X ; 0000-0001-9145-0530 ; 0000-0002-4206-5174 ; 0000-0002-6072-8189 ; 0000-0003-1184-7453 ; 0000-0001-8303-4529 ; 0000-0003-3040-8456 ; 0000-0002-2692-7520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1598,27901,27902</link.rule.ids></links><search><creatorcontrib>Bae, Yeong-Bok</creatorcontrib><creatorcontrib>Park, Chan</creatorcontrib><creatorcontrib>Son, Edwin J</creatorcontrib><creatorcontrib>Ahn, Sang-Hyeon</creatorcontrib><creatorcontrib>Jeong, Minjoong</creatorcontrib><creatorcontrib>Kang, Gungwon</creatorcontrib><creatorcontrib>Kim, Chunglee</creatorcontrib><creatorcontrib>Kim, Dong Lak</creatorcontrib><creatorcontrib>Kim, Jaewan</creatorcontrib><creatorcontrib>Kim, Whansun</creatorcontrib><creatorcontrib>Lee, Hyung Mok</creatorcontrib><creatorcontrib>Lee, Yong-Ho</creatorcontrib><creatorcontrib>Norton, Ronald S</creatorcontrib><creatorcontrib>Oh, John J</creatorcontrib><creatorcontrib>Oh, Sang Hoon</creatorcontrib><creatorcontrib>Paik, Ho Jung</creatorcontrib><title>A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets</title><title>Progress of Theoretical and Experimental Physics</title><description>Mid-frequency band gravitational-wave detectors will be complementary to the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as the Laser Interferometer Space Antenna (LISA), which will be sensitive below around 10 mHz. A ground-based superconducting omnidirectional gravitational radiation observatory (SOGRO) has recently been proposed along with several design variations for the frequency band of 0.1–10 Hz. For two conceptual designs of SOGRO (i.e. SOGRO and advanced SOGRO [aSOGRO]), we examine their multichannel natures, sensitivities, and science cases. One of the key characteristics of the SOGRO concept is its six detection channels. The response functions of each channel are calculated for all possible gravitational wave (GW) polarizations including scalar and vector modes. Combining these response functions, we also confirm the omnidirectional nature of SOGRO. Hence, even a single SOGRO detector will be able to determine the position of a source and polarizations of GWs, if detected. Taking into account SOGRO’s sensitivity and technical requirements, two main targets are most plausible: GWs from compact binaries and stochastic backgrounds. Based on assumptions we consider in this work, detection rates for intermediate-mass binary black holes (in the mass range of hundreds up to $10^{5}\, M_\odot$) are expected to be 0.0065–8.1 yr−1. In order to detect the stochastic GW background, multiple detectors are required. Two aSOGRO detector networks may be able to put limits on the stochastic background beyond the indirect limit from cosmological observations.</description><subject>Antennas (Electronics)</subject><subject>Detectors</subject><subject>Superconductors</subject><issn>2050-3911</issn><issn>2050-3911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9ULFOwzAQjRBIVKUbH-CNhYCdxHHMVhVaKrUwUMQYHc6lNUqdYDuVOvHruGoHJnS6u6fTe0-6F0XXjN4xKtP7zmMXBiDN-Fk0SCincSoZO_-DL6ORc1-UUkaFoBkbRD9j8tZ3aFVrql55bdZkhca1ljyiR-UDqEMvdRVPLX73aNSezCzstAevWwMN-YAdugcy944s-8ZrtQFjsCEv4HuLBExFlqANGTtv226zd1oF1QrsGr27ii5qaByOTnsYvU-fVpPnePE6m0_Gi1glUvgYP3POeMaLvMCEUsVzmTCl0hxyyRKJKQjOK5oicpUmgicqUyBkmkngdVHTdBjdHX3X0GCpTd16CypUhVsdnsdah_tYyCLjXGRJENweBcq2zlmsy87qLdh9yWh5CLw8BF6eAg_0myO97bv_mb9bm4QB</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Bae, Yeong-Bok</creator><creator>Park, Chan</creator><creator>Son, Edwin J</creator><creator>Ahn, Sang-Hyeon</creator><creator>Jeong, Minjoong</creator><creator>Kang, Gungwon</creator><creator>Kim, Chunglee</creator><creator>Kim, Dong Lak</creator><creator>Kim, Jaewan</creator><creator>Kim, Whansun</creator><creator>Lee, Hyung Mok</creator><creator>Lee, Yong-Ho</creator><creator>Norton, Ronald S</creator><creator>Oh, John J</creator><creator>Oh, Sang Hoon</creator><creator>Paik, Ho Jung</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-9234-362X</orcidid><orcidid>https://orcid.org/0000-0003-3093-9206</orcidid><orcidid>https://orcid.org/0000-0003-4412-7161</orcidid><orcidid>https://orcid.org/0000-0001-5417-862X</orcidid><orcidid>https://orcid.org/0000-0001-9145-0530</orcidid><orcidid>https://orcid.org/0000-0002-4206-5174</orcidid><orcidid>https://orcid.org/0000-0002-6072-8189</orcidid><orcidid>https://orcid.org/0000-0003-1184-7453</orcidid><orcidid>https://orcid.org/0000-0001-8303-4529</orcidid><orcidid>https://orcid.org/0000-0003-3040-8456</orcidid><orcidid>https://orcid.org/0000-0002-2692-7520</orcidid></search><sort><creationdate>20240501</creationdate><title>A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets</title><author>Bae, Yeong-Bok ; Park, Chan ; Son, Edwin J ; Ahn, Sang-Hyeon ; Jeong, Minjoong ; Kang, Gungwon ; Kim, Chunglee ; Kim, Dong Lak ; Kim, Jaewan ; Kim, Whansun ; Lee, Hyung Mok ; Lee, Yong-Ho ; Norton, Ronald S ; Oh, John J ; Oh, Sang Hoon ; Paik, Ho Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-eb651545868e200c56921cc36a69129e3a755d03ee5c32752c4ca79349a5f8f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antennas (Electronics)</topic><topic>Detectors</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Yeong-Bok</creatorcontrib><creatorcontrib>Park, Chan</creatorcontrib><creatorcontrib>Son, Edwin J</creatorcontrib><creatorcontrib>Ahn, Sang-Hyeon</creatorcontrib><creatorcontrib>Jeong, Minjoong</creatorcontrib><creatorcontrib>Kang, Gungwon</creatorcontrib><creatorcontrib>Kim, Chunglee</creatorcontrib><creatorcontrib>Kim, Dong Lak</creatorcontrib><creatorcontrib>Kim, Jaewan</creatorcontrib><creatorcontrib>Kim, Whansun</creatorcontrib><creatorcontrib>Lee, Hyung Mok</creatorcontrib><creatorcontrib>Lee, Yong-Ho</creatorcontrib><creatorcontrib>Norton, Ronald S</creatorcontrib><creatorcontrib>Oh, John J</creatorcontrib><creatorcontrib>Oh, Sang Hoon</creatorcontrib><creatorcontrib>Paik, Ho Jung</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>Progress of Theoretical and Experimental Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Yeong-Bok</au><au>Park, Chan</au><au>Son, Edwin J</au><au>Ahn, Sang-Hyeon</au><au>Jeong, Minjoong</au><au>Kang, Gungwon</au><au>Kim, Chunglee</au><au>Kim, Dong Lak</au><au>Kim, Jaewan</au><au>Kim, Whansun</au><au>Lee, Hyung Mok</au><au>Lee, Yong-Ho</au><au>Norton, Ronald S</au><au>Oh, John J</au><au>Oh, Sang Hoon</au><au>Paik, Ho Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets</atitle><jtitle>Progress of Theoretical and Experimental Physics</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>2024</volume><issue>5</issue><spage>1</spage><pages>1-</pages><issn>2050-3911</issn><eissn>2050-3911</eissn><abstract>Mid-frequency band gravitational-wave detectors will be complementary to the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as the Laser Interferometer Space Antenna (LISA), which will be sensitive below around 10 mHz. A ground-based superconducting omnidirectional gravitational radiation observatory (SOGRO) has recently been proposed along with several design variations for the frequency band of 0.1–10 Hz. For two conceptual designs of SOGRO (i.e. SOGRO and advanced SOGRO [aSOGRO]), we examine their multichannel natures, sensitivities, and science cases. One of the key characteristics of the SOGRO concept is its six detection channels. The response functions of each channel are calculated for all possible gravitational wave (GW) polarizations including scalar and vector modes. Combining these response functions, we also confirm the omnidirectional nature of SOGRO. Hence, even a single SOGRO detector will be able to determine the position of a source and polarizations of GWs, if detected. Taking into account SOGRO’s sensitivity and technical requirements, two main targets are most plausible: GWs from compact binaries and stochastic backgrounds. Based on assumptions we consider in this work, detection rates for intermediate-mass binary black holes (in the mass range of hundreds up to $10^{5}\, M_\odot$) are expected to be 0.0065–8.1 yr−1. In order to detect the stochastic GW background, multiple detectors are required. Two aSOGRO detector networks may be able to put limits on the stochastic background beyond the indirect limit from cosmological observations.</abstract><pub>Oxford University Press</pub><doi>10.1093/ptep/ptae045</doi><orcidid>https://orcid.org/0000-0002-9234-362X</orcidid><orcidid>https://orcid.org/0000-0003-3093-9206</orcidid><orcidid>https://orcid.org/0000-0003-4412-7161</orcidid><orcidid>https://orcid.org/0000-0001-5417-862X</orcidid><orcidid>https://orcid.org/0000-0001-9145-0530</orcidid><orcidid>https://orcid.org/0000-0002-4206-5174</orcidid><orcidid>https://orcid.org/0000-0002-6072-8189</orcidid><orcidid>https://orcid.org/0000-0003-1184-7453</orcidid><orcidid>https://orcid.org/0000-0001-8303-4529</orcidid><orcidid>https://orcid.org/0000-0003-3040-8456</orcidid><orcidid>https://orcid.org/0000-0002-2692-7520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-3911
ispartof Progress of Theoretical and Experimental Physics, 2024-05, Vol.2024 (5), p.1
issn 2050-3911
2050-3911
language eng
recordid cdi_crossref_primary_10_1093_ptep_ptae045
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Antennas (Electronics)
Detectors
Superconductors
title A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Superconducting%20Tensor%20Detector%20for%20Mid-Frequency%20Gravitational%20Waves:%20Its%20Multichannel%20Nature%20and%20Main%20Astrophysical%20Targets&rft.jtitle=Progress%20of%20Theoretical%20and%20Experimental%20Physics&rft.au=Bae,%20Yeong-Bok&rft.date=2024-05-01&rft.volume=2024&rft.issue=5&rft.spage=1&rft.pages=1-&rft.issn=2050-3911&rft.eissn=2050-3911&rft_id=info:doi/10.1093/ptep/ptae045&rft_dat=%3Cgale_cross%3EA798455742%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A798455742&rft_oup_id=10.1093/ptep/ptae045&rfr_iscdi=true