A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets
Mid-frequency band gravitational-wave detectors will be complementary to the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as the Laser Interferometer Space Antenna (LISA), which will be sensitive below around 10 mHz. A ground-based supercondu...
Gespeichert in:
Veröffentlicht in: | Progress of Theoretical and Experimental Physics 2024-05, Vol.2024 (5), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Progress of Theoretical and Experimental Physics |
container_volume | 2024 |
creator | Bae, Yeong-Bok Park, Chan Son, Edwin J Ahn, Sang-Hyeon Jeong, Minjoong Kang, Gungwon Kim, Chunglee Kim, Dong Lak Kim, Jaewan Kim, Whansun Lee, Hyung Mok Lee, Yong-Ho Norton, Ronald S Oh, John J Oh, Sang Hoon Paik, Ho Jung |
description | Mid-frequency band gravitational-wave detectors will be complementary to the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as the Laser Interferometer Space Antenna (LISA), which will be sensitive below around 10 mHz. A ground-based superconducting omnidirectional gravitational radiation observatory (SOGRO) has recently been proposed along with several design variations for the frequency band of 0.1–10 Hz. For two conceptual designs of SOGRO (i.e. SOGRO and advanced SOGRO [aSOGRO]), we examine their multichannel natures, sensitivities, and science cases. One of the key characteristics of the SOGRO concept is its six detection channels. The response functions of each channel are calculated for all possible gravitational wave (GW) polarizations including scalar and vector modes. Combining these response functions, we also confirm the omnidirectional nature of SOGRO. Hence, even a single SOGRO detector will be able to determine the position of a source and polarizations of GWs, if detected. Taking into account SOGRO’s sensitivity and technical requirements, two main targets are most plausible: GWs from compact binaries and stochastic backgrounds. Based on assumptions we consider in this work, detection rates for intermediate-mass binary black holes (in the mass range of hundreds up to $10^{5}\, M_\odot$) are expected to be 0.0065–8.1 yr−1. In order to detect the stochastic GW background, multiple detectors are required. Two aSOGRO detector networks may be able to put limits on the stochastic background beyond the indirect limit from cosmological observations. |
doi_str_mv | 10.1093/ptep/ptae045 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ptep_ptae045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A798455742</galeid><oup_id>10.1093/ptep/ptae045</oup_id><sourcerecordid>A798455742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-eb651545868e200c56921cc36a69129e3a755d03ee5c32752c4ca79349a5f8f03</originalsourceid><addsrcrecordid>eNp9ULFOwzAQjRBIVKUbH-CNhYCdxHHMVhVaKrUwUMQYHc6lNUqdYDuVOvHruGoHJnS6u6fTe0-6F0XXjN4xKtP7zmMXBiDN-Fk0SCincSoZO_-DL6ORc1-UUkaFoBkbRD9j8tZ3aFVrql55bdZkhca1ljyiR-UDqEMvdRVPLX73aNSezCzstAevWwMN-YAdugcy944s-8ZrtQFjsCEv4HuLBExFlqANGTtv226zd1oF1QrsGr27ii5qaByOTnsYvU-fVpPnePE6m0_Gi1glUvgYP3POeMaLvMCEUsVzmTCl0hxyyRKJKQjOK5oicpUmgicqUyBkmkngdVHTdBjdHX3X0GCpTd16CypUhVsdnsdah_tYyCLjXGRJENweBcq2zlmsy87qLdh9yWh5CLw8BF6eAg_0myO97bv_mb9bm4QB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bae, Yeong-Bok ; Park, Chan ; Son, Edwin J ; Ahn, Sang-Hyeon ; Jeong, Minjoong ; Kang, Gungwon ; Kim, Chunglee ; Kim, Dong Lak ; Kim, Jaewan ; Kim, Whansun ; Lee, Hyung Mok ; Lee, Yong-Ho ; Norton, Ronald S ; Oh, John J ; Oh, Sang Hoon ; Paik, Ho Jung</creator><creatorcontrib>Bae, Yeong-Bok ; Park, Chan ; Son, Edwin J ; Ahn, Sang-Hyeon ; Jeong, Minjoong ; Kang, Gungwon ; Kim, Chunglee ; Kim, Dong Lak ; Kim, Jaewan ; Kim, Whansun ; Lee, Hyung Mok ; Lee, Yong-Ho ; Norton, Ronald S ; Oh, John J ; Oh, Sang Hoon ; Paik, Ho Jung</creatorcontrib><description>Mid-frequency band gravitational-wave detectors will be complementary to the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as the Laser Interferometer Space Antenna (LISA), which will be sensitive below around 10 mHz. A ground-based superconducting omnidirectional gravitational radiation observatory (SOGRO) has recently been proposed along with several design variations for the frequency band of 0.1–10 Hz. For two conceptual designs of SOGRO (i.e. SOGRO and advanced SOGRO [aSOGRO]), we examine their multichannel natures, sensitivities, and science cases. One of the key characteristics of the SOGRO concept is its six detection channels. The response functions of each channel are calculated for all possible gravitational wave (GW) polarizations including scalar and vector modes. Combining these response functions, we also confirm the omnidirectional nature of SOGRO. Hence, even a single SOGRO detector will be able to determine the position of a source and polarizations of GWs, if detected. Taking into account SOGRO’s sensitivity and technical requirements, two main targets are most plausible: GWs from compact binaries and stochastic backgrounds. Based on assumptions we consider in this work, detection rates for intermediate-mass binary black holes (in the mass range of hundreds up to $10^{5}\, M_\odot$) are expected to be 0.0065–8.1 yr−1. In order to detect the stochastic GW background, multiple detectors are required. Two aSOGRO detector networks may be able to put limits on the stochastic background beyond the indirect limit from cosmological observations.</description><identifier>ISSN: 2050-3911</identifier><identifier>EISSN: 2050-3911</identifier><identifier>DOI: 10.1093/ptep/ptae045</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Antennas (Electronics) ; Detectors ; Superconductors</subject><ispartof>Progress of Theoretical and Experimental Physics, 2024-05, Vol.2024 (5), p.1</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024</rights><rights>COPYRIGHT 2024 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-eb651545868e200c56921cc36a69129e3a755d03ee5c32752c4ca79349a5f8f03</cites><orcidid>0000-0002-9234-362X ; 0000-0003-3093-9206 ; 0000-0003-4412-7161 ; 0000-0001-5417-862X ; 0000-0001-9145-0530 ; 0000-0002-4206-5174 ; 0000-0002-6072-8189 ; 0000-0003-1184-7453 ; 0000-0001-8303-4529 ; 0000-0003-3040-8456 ; 0000-0002-2692-7520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1598,27901,27902</link.rule.ids></links><search><creatorcontrib>Bae, Yeong-Bok</creatorcontrib><creatorcontrib>Park, Chan</creatorcontrib><creatorcontrib>Son, Edwin J</creatorcontrib><creatorcontrib>Ahn, Sang-Hyeon</creatorcontrib><creatorcontrib>Jeong, Minjoong</creatorcontrib><creatorcontrib>Kang, Gungwon</creatorcontrib><creatorcontrib>Kim, Chunglee</creatorcontrib><creatorcontrib>Kim, Dong Lak</creatorcontrib><creatorcontrib>Kim, Jaewan</creatorcontrib><creatorcontrib>Kim, Whansun</creatorcontrib><creatorcontrib>Lee, Hyung Mok</creatorcontrib><creatorcontrib>Lee, Yong-Ho</creatorcontrib><creatorcontrib>Norton, Ronald S</creatorcontrib><creatorcontrib>Oh, John J</creatorcontrib><creatorcontrib>Oh, Sang Hoon</creatorcontrib><creatorcontrib>Paik, Ho Jung</creatorcontrib><title>A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets</title><title>Progress of Theoretical and Experimental Physics</title><description>Mid-frequency band gravitational-wave detectors will be complementary to the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as the Laser Interferometer Space Antenna (LISA), which will be sensitive below around 10 mHz. A ground-based superconducting omnidirectional gravitational radiation observatory (SOGRO) has recently been proposed along with several design variations for the frequency band of 0.1–10 Hz. For two conceptual designs of SOGRO (i.e. SOGRO and advanced SOGRO [aSOGRO]), we examine their multichannel natures, sensitivities, and science cases. One of the key characteristics of the SOGRO concept is its six detection channels. The response functions of each channel are calculated for all possible gravitational wave (GW) polarizations including scalar and vector modes. Combining these response functions, we also confirm the omnidirectional nature of SOGRO. Hence, even a single SOGRO detector will be able to determine the position of a source and polarizations of GWs, if detected. Taking into account SOGRO’s sensitivity and technical requirements, two main targets are most plausible: GWs from compact binaries and stochastic backgrounds. Based on assumptions we consider in this work, detection rates for intermediate-mass binary black holes (in the mass range of hundreds up to $10^{5}\, M_\odot$) are expected to be 0.0065–8.1 yr−1. In order to detect the stochastic GW background, multiple detectors are required. Two aSOGRO detector networks may be able to put limits on the stochastic background beyond the indirect limit from cosmological observations.</description><subject>Antennas (Electronics)</subject><subject>Detectors</subject><subject>Superconductors</subject><issn>2050-3911</issn><issn>2050-3911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9ULFOwzAQjRBIVKUbH-CNhYCdxHHMVhVaKrUwUMQYHc6lNUqdYDuVOvHruGoHJnS6u6fTe0-6F0XXjN4xKtP7zmMXBiDN-Fk0SCincSoZO_-DL6ORc1-UUkaFoBkbRD9j8tZ3aFVrql55bdZkhca1ljyiR-UDqEMvdRVPLX73aNSezCzstAevWwMN-YAdugcy944s-8ZrtQFjsCEv4HuLBExFlqANGTtv226zd1oF1QrsGr27ii5qaByOTnsYvU-fVpPnePE6m0_Gi1glUvgYP3POeMaLvMCEUsVzmTCl0hxyyRKJKQjOK5oicpUmgicqUyBkmkngdVHTdBjdHX3X0GCpTd16CypUhVsdnsdah_tYyCLjXGRJENweBcq2zlmsy87qLdh9yWh5CLw8BF6eAg_0myO97bv_mb9bm4QB</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Bae, Yeong-Bok</creator><creator>Park, Chan</creator><creator>Son, Edwin J</creator><creator>Ahn, Sang-Hyeon</creator><creator>Jeong, Minjoong</creator><creator>Kang, Gungwon</creator><creator>Kim, Chunglee</creator><creator>Kim, Dong Lak</creator><creator>Kim, Jaewan</creator><creator>Kim, Whansun</creator><creator>Lee, Hyung Mok</creator><creator>Lee, Yong-Ho</creator><creator>Norton, Ronald S</creator><creator>Oh, John J</creator><creator>Oh, Sang Hoon</creator><creator>Paik, Ho Jung</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-9234-362X</orcidid><orcidid>https://orcid.org/0000-0003-3093-9206</orcidid><orcidid>https://orcid.org/0000-0003-4412-7161</orcidid><orcidid>https://orcid.org/0000-0001-5417-862X</orcidid><orcidid>https://orcid.org/0000-0001-9145-0530</orcidid><orcidid>https://orcid.org/0000-0002-4206-5174</orcidid><orcidid>https://orcid.org/0000-0002-6072-8189</orcidid><orcidid>https://orcid.org/0000-0003-1184-7453</orcidid><orcidid>https://orcid.org/0000-0001-8303-4529</orcidid><orcidid>https://orcid.org/0000-0003-3040-8456</orcidid><orcidid>https://orcid.org/0000-0002-2692-7520</orcidid></search><sort><creationdate>20240501</creationdate><title>A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets</title><author>Bae, Yeong-Bok ; Park, Chan ; Son, Edwin J ; Ahn, Sang-Hyeon ; Jeong, Minjoong ; Kang, Gungwon ; Kim, Chunglee ; Kim, Dong Lak ; Kim, Jaewan ; Kim, Whansun ; Lee, Hyung Mok ; Lee, Yong-Ho ; Norton, Ronald S ; Oh, John J ; Oh, Sang Hoon ; Paik, Ho Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-eb651545868e200c56921cc36a69129e3a755d03ee5c32752c4ca79349a5f8f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antennas (Electronics)</topic><topic>Detectors</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Yeong-Bok</creatorcontrib><creatorcontrib>Park, Chan</creatorcontrib><creatorcontrib>Son, Edwin J</creatorcontrib><creatorcontrib>Ahn, Sang-Hyeon</creatorcontrib><creatorcontrib>Jeong, Minjoong</creatorcontrib><creatorcontrib>Kang, Gungwon</creatorcontrib><creatorcontrib>Kim, Chunglee</creatorcontrib><creatorcontrib>Kim, Dong Lak</creatorcontrib><creatorcontrib>Kim, Jaewan</creatorcontrib><creatorcontrib>Kim, Whansun</creatorcontrib><creatorcontrib>Lee, Hyung Mok</creatorcontrib><creatorcontrib>Lee, Yong-Ho</creatorcontrib><creatorcontrib>Norton, Ronald S</creatorcontrib><creatorcontrib>Oh, John J</creatorcontrib><creatorcontrib>Oh, Sang Hoon</creatorcontrib><creatorcontrib>Paik, Ho Jung</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>Progress of Theoretical and Experimental Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Yeong-Bok</au><au>Park, Chan</au><au>Son, Edwin J</au><au>Ahn, Sang-Hyeon</au><au>Jeong, Minjoong</au><au>Kang, Gungwon</au><au>Kim, Chunglee</au><au>Kim, Dong Lak</au><au>Kim, Jaewan</au><au>Kim, Whansun</au><au>Lee, Hyung Mok</au><au>Lee, Yong-Ho</au><au>Norton, Ronald S</au><au>Oh, John J</au><au>Oh, Sang Hoon</au><au>Paik, Ho Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets</atitle><jtitle>Progress of Theoretical and Experimental Physics</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>2024</volume><issue>5</issue><spage>1</spage><pages>1-</pages><issn>2050-3911</issn><eissn>2050-3911</eissn><abstract>Mid-frequency band gravitational-wave detectors will be complementary to the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as the Laser Interferometer Space Antenna (LISA), which will be sensitive below around 10 mHz. A ground-based superconducting omnidirectional gravitational radiation observatory (SOGRO) has recently been proposed along with several design variations for the frequency band of 0.1–10 Hz. For two conceptual designs of SOGRO (i.e. SOGRO and advanced SOGRO [aSOGRO]), we examine their multichannel natures, sensitivities, and science cases. One of the key characteristics of the SOGRO concept is its six detection channels. The response functions of each channel are calculated for all possible gravitational wave (GW) polarizations including scalar and vector modes. Combining these response functions, we also confirm the omnidirectional nature of SOGRO. Hence, even a single SOGRO detector will be able to determine the position of a source and polarizations of GWs, if detected. Taking into account SOGRO’s sensitivity and technical requirements, two main targets are most plausible: GWs from compact binaries and stochastic backgrounds. Based on assumptions we consider in this work, detection rates for intermediate-mass binary black holes (in the mass range of hundreds up to $10^{5}\, M_\odot$) are expected to be 0.0065–8.1 yr−1. In order to detect the stochastic GW background, multiple detectors are required. Two aSOGRO detector networks may be able to put limits on the stochastic background beyond the indirect limit from cosmological observations.</abstract><pub>Oxford University Press</pub><doi>10.1093/ptep/ptae045</doi><orcidid>https://orcid.org/0000-0002-9234-362X</orcidid><orcidid>https://orcid.org/0000-0003-3093-9206</orcidid><orcidid>https://orcid.org/0000-0003-4412-7161</orcidid><orcidid>https://orcid.org/0000-0001-5417-862X</orcidid><orcidid>https://orcid.org/0000-0001-9145-0530</orcidid><orcidid>https://orcid.org/0000-0002-4206-5174</orcidid><orcidid>https://orcid.org/0000-0002-6072-8189</orcidid><orcidid>https://orcid.org/0000-0003-1184-7453</orcidid><orcidid>https://orcid.org/0000-0001-8303-4529</orcidid><orcidid>https://orcid.org/0000-0003-3040-8456</orcidid><orcidid>https://orcid.org/0000-0002-2692-7520</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-3911 |
ispartof | Progress of Theoretical and Experimental Physics, 2024-05, Vol.2024 (5), p.1 |
issn | 2050-3911 2050-3911 |
language | eng |
recordid | cdi_crossref_primary_10_1093_ptep_ptae045 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Antennas (Electronics) Detectors Superconductors |
title | A Superconducting Tensor Detector for Mid-Frequency Gravitational Waves: Its Multichannel Nature and Main Astrophysical Targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Superconducting%20Tensor%20Detector%20for%20Mid-Frequency%20Gravitational%20Waves:%20Its%20Multichannel%20Nature%20and%20Main%20Astrophysical%20Targets&rft.jtitle=Progress%20of%20Theoretical%20and%20Experimental%20Physics&rft.au=Bae,%20Yeong-Bok&rft.date=2024-05-01&rft.volume=2024&rft.issue=5&rft.spage=1&rft.pages=1-&rft.issn=2050-3911&rft.eissn=2050-3911&rft_id=info:doi/10.1093/ptep/ptae045&rft_dat=%3Cgale_cross%3EA798455742%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A798455742&rft_oup_id=10.1093/ptep/ptae045&rfr_iscdi=true |