Boundary conditions for constraint systems in variational principle
Abstract We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order d...
Gespeichert in:
Veröffentlicht in: | Progress of Theoretical and Experimental Physics 2023-10, Vol.2023 (10), p.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Progress of Theoretical and Experimental Physics |
container_volume | 2023 |
creator | Izumi, Keisuke Shimada, Keigo Tomonari, Kyosuke Yamaguchi, Masahide |
description | Abstract
We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order derivatives, the minimal (or extremal) value of the action with the boundary terms is not a solution of the equation of motion in the Dirac procedure of constrained systems. We propose specific and concrete steps to solve this problem. These steps utilize the Hamilton formalism, which allows us to separate the physical degrees of freedom from the constraints. This reveals the physical degrees of freedom that are necessary to be fixed on boundaries, and also enables us to specify the variables to be fixed and the surface terms. |
doi_str_mv | 10.1093/ptep/ptad122 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ptep_ptad122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A773797375</galeid><oup_id>10.1093/ptep/ptad122</oup_id><sourcerecordid>A773797375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-bc9ae126664d0bb5cd9a84a7eda7557313925267af23bee942e65096164e89353</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLgsu7NH9CbF7vm0SSb41p8wYIXPZc0mUqkTUrSFfbfm9I9eJJhnnwzfPMhdEvwlmDFHsYJxhy0JZReoBXFHJdMEXL5p75Gm5S-McYES4krskL1Yzh6q-OpMMFbN7ngU9GFOLdpitr5qUinNMGQCueLHx2dnkG6L8bovHFjDzfoqtN9gs05r9Hn89NH_Voe3l_e6v2hNEzuprI1SgOhQojK4rblxiq9q7QEqyXnkhGmKKdC6o6yFkBVFATHShBRwU4xztZou9z90j00znchEzTZLAwu84XO5fleSiZV9nnhflkwMaQUoWsy5yE_2xDczKI1s2jNWbQMv1vg4Tj-j_wFJEhvGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boundary conditions for constraint systems in variational principle</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Izumi, Keisuke ; Shimada, Keigo ; Tomonari, Kyosuke ; Yamaguchi, Masahide</creator><creatorcontrib>Izumi, Keisuke ; Shimada, Keigo ; Tomonari, Kyosuke ; Yamaguchi, Masahide</creatorcontrib><description>Abstract
We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order derivatives, the minimal (or extremal) value of the action with the boundary terms is not a solution of the equation of motion in the Dirac procedure of constrained systems. We propose specific and concrete steps to solve this problem. These steps utilize the Hamilton formalism, which allows us to separate the physical degrees of freedom from the constraints. This reveals the physical degrees of freedom that are necessary to be fixed on boundaries, and also enables us to specify the variables to be fixed and the surface terms.</description><identifier>ISSN: 2050-3911</identifier><identifier>EISSN: 2050-3911</identifier><identifier>DOI: 10.1093/ptep/ptad122</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Boundary value problems ; Gauge fields (Physics)</subject><ispartof>Progress of Theoretical and Experimental Physics, 2023-10, Vol.2023 (10), p.1</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-bc9ae126664d0bb5cd9a84a7eda7557313925267af23bee942e65096164e89353</citedby><cites>FETCH-LOGICAL-c378t-bc9ae126664d0bb5cd9a84a7eda7557313925267af23bee942e65096164e89353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1604,27924,27925</link.rule.ids></links><search><creatorcontrib>Izumi, Keisuke</creatorcontrib><creatorcontrib>Shimada, Keigo</creatorcontrib><creatorcontrib>Tomonari, Kyosuke</creatorcontrib><creatorcontrib>Yamaguchi, Masahide</creatorcontrib><title>Boundary conditions for constraint systems in variational principle</title><title>Progress of Theoretical and Experimental Physics</title><description>Abstract
We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order derivatives, the minimal (or extremal) value of the action with the boundary terms is not a solution of the equation of motion in the Dirac procedure of constrained systems. We propose specific and concrete steps to solve this problem. These steps utilize the Hamilton formalism, which allows us to separate the physical degrees of freedom from the constraints. This reveals the physical degrees of freedom that are necessary to be fixed on boundaries, and also enables us to specify the variables to be fixed and the surface terms.</description><subject>Boundary value problems</subject><subject>Gauge fields (Physics)</subject><issn>2050-3911</issn><issn>2050-3911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9UEtLxDAQDqLgsu7NH9CbF7vm0SSb41p8wYIXPZc0mUqkTUrSFfbfm9I9eJJhnnwzfPMhdEvwlmDFHsYJxhy0JZReoBXFHJdMEXL5p75Gm5S-McYES4krskL1Yzh6q-OpMMFbN7ngU9GFOLdpitr5qUinNMGQCueLHx2dnkG6L8bovHFjDzfoqtN9gs05r9Hn89NH_Voe3l_e6v2hNEzuprI1SgOhQojK4rblxiq9q7QEqyXnkhGmKKdC6o6yFkBVFATHShBRwU4xztZou9z90j00znchEzTZLAwu84XO5fleSiZV9nnhflkwMaQUoWsy5yE_2xDczKI1s2jNWbQMv1vg4Tj-j_wFJEhvGA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Izumi, Keisuke</creator><creator>Shimada, Keigo</creator><creator>Tomonari, Kyosuke</creator><creator>Yamaguchi, Masahide</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20231001</creationdate><title>Boundary conditions for constraint systems in variational principle</title><author>Izumi, Keisuke ; Shimada, Keigo ; Tomonari, Kyosuke ; Yamaguchi, Masahide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-bc9ae126664d0bb5cd9a84a7eda7557313925267af23bee942e65096164e89353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary value problems</topic><topic>Gauge fields (Physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izumi, Keisuke</creatorcontrib><creatorcontrib>Shimada, Keigo</creatorcontrib><creatorcontrib>Tomonari, Kyosuke</creatorcontrib><creatorcontrib>Yamaguchi, Masahide</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>Progress of Theoretical and Experimental Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izumi, Keisuke</au><au>Shimada, Keigo</au><au>Tomonari, Kyosuke</au><au>Yamaguchi, Masahide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary conditions for constraint systems in variational principle</atitle><jtitle>Progress of Theoretical and Experimental Physics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>2023</volume><issue>10</issue><spage>1</spage><pages>1-</pages><issn>2050-3911</issn><eissn>2050-3911</eissn><abstract>Abstract
We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order derivatives, the minimal (or extremal) value of the action with the boundary terms is not a solution of the equation of motion in the Dirac procedure of constrained systems. We propose specific and concrete steps to solve this problem. These steps utilize the Hamilton formalism, which allows us to separate the physical degrees of freedom from the constraints. This reveals the physical degrees of freedom that are necessary to be fixed on boundaries, and also enables us to specify the variables to be fixed and the surface terms.</abstract><pub>Oxford University Press</pub><doi>10.1093/ptep/ptad122</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-3911 |
ispartof | Progress of Theoretical and Experimental Physics, 2023-10, Vol.2023 (10), p.1 |
issn | 2050-3911 2050-3911 |
language | eng |
recordid | cdi_crossref_primary_10_1093_ptep_ptad122 |
source | DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Boundary value problems Gauge fields (Physics) |
title | Boundary conditions for constraint systems in variational principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20conditions%20for%20constraint%20systems%20in%20variational%20principle&rft.jtitle=Progress%20of%20Theoretical%20and%20Experimental%20Physics&rft.au=Izumi,%20Keisuke&rft.date=2023-10-01&rft.volume=2023&rft.issue=10&rft.spage=1&rft.pages=1-&rft.issn=2050-3911&rft.eissn=2050-3911&rft_id=info:doi/10.1093/ptep/ptad122&rft_dat=%3Cgale_cross%3EA773797375%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A773797375&rft_oup_id=10.1093/ptep/ptad122&rfr_iscdi=true |