Boundary conditions for constraint systems in variational principle

Abstract We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress of Theoretical and Experimental Physics 2023-10, Vol.2023 (10), p.1
Hauptverfasser: Izumi, Keisuke, Shimada, Keigo, Tomonari, Kyosuke, Yamaguchi, Masahide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1
container_title Progress of Theoretical and Experimental Physics
container_volume 2023
creator Izumi, Keisuke
Shimada, Keigo
Tomonari, Kyosuke
Yamaguchi, Masahide
description Abstract We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order derivatives, the minimal (or extremal) value of the action with the boundary terms is not a solution of the equation of motion in the Dirac procedure of constrained systems. We propose specific and concrete steps to solve this problem. These steps utilize the Hamilton formalism, which allows us to separate the physical degrees of freedom from the constraints. This reveals the physical degrees of freedom that are necessary to be fixed on boundaries, and also enables us to specify the variables to be fixed and the surface terms.
doi_str_mv 10.1093/ptep/ptad122
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ptep_ptad122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A773797375</galeid><oup_id>10.1093/ptep/ptad122</oup_id><sourcerecordid>A773797375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-bc9ae126664d0bb5cd9a84a7eda7557313925267af23bee942e65096164e89353</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLgsu7NH9CbF7vm0SSb41p8wYIXPZc0mUqkTUrSFfbfm9I9eJJhnnwzfPMhdEvwlmDFHsYJxhy0JZReoBXFHJdMEXL5p75Gm5S-McYES4krskL1Yzh6q-OpMMFbN7ngU9GFOLdpitr5qUinNMGQCueLHx2dnkG6L8bovHFjDzfoqtN9gs05r9Hn89NH_Voe3l_e6v2hNEzuprI1SgOhQojK4rblxiq9q7QEqyXnkhGmKKdC6o6yFkBVFATHShBRwU4xztZou9z90j00znchEzTZLAwu84XO5fleSiZV9nnhflkwMaQUoWsy5yE_2xDczKI1s2jNWbQMv1vg4Tj-j_wFJEhvGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boundary conditions for constraint systems in variational principle</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Izumi, Keisuke ; Shimada, Keigo ; Tomonari, Kyosuke ; Yamaguchi, Masahide</creator><creatorcontrib>Izumi, Keisuke ; Shimada, Keigo ; Tomonari, Kyosuke ; Yamaguchi, Masahide</creatorcontrib><description>Abstract We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order derivatives, the minimal (or extremal) value of the action with the boundary terms is not a solution of the equation of motion in the Dirac procedure of constrained systems. We propose specific and concrete steps to solve this problem. These steps utilize the Hamilton formalism, which allows us to separate the physical degrees of freedom from the constraints. This reveals the physical degrees of freedom that are necessary to be fixed on boundaries, and also enables us to specify the variables to be fixed and the surface terms.</description><identifier>ISSN: 2050-3911</identifier><identifier>EISSN: 2050-3911</identifier><identifier>DOI: 10.1093/ptep/ptad122</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Boundary value problems ; Gauge fields (Physics)</subject><ispartof>Progress of Theoretical and Experimental Physics, 2023-10, Vol.2023 (10), p.1</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-bc9ae126664d0bb5cd9a84a7eda7557313925267af23bee942e65096164e89353</citedby><cites>FETCH-LOGICAL-c378t-bc9ae126664d0bb5cd9a84a7eda7557313925267af23bee942e65096164e89353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1604,27924,27925</link.rule.ids></links><search><creatorcontrib>Izumi, Keisuke</creatorcontrib><creatorcontrib>Shimada, Keigo</creatorcontrib><creatorcontrib>Tomonari, Kyosuke</creatorcontrib><creatorcontrib>Yamaguchi, Masahide</creatorcontrib><title>Boundary conditions for constraint systems in variational principle</title><title>Progress of Theoretical and Experimental Physics</title><description>Abstract We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order derivatives, the minimal (or extremal) value of the action with the boundary terms is not a solution of the equation of motion in the Dirac procedure of constrained systems. We propose specific and concrete steps to solve this problem. These steps utilize the Hamilton formalism, which allows us to separate the physical degrees of freedom from the constraints. This reveals the physical degrees of freedom that are necessary to be fixed on boundaries, and also enables us to specify the variables to be fixed and the surface terms.</description><subject>Boundary value problems</subject><subject>Gauge fields (Physics)</subject><issn>2050-3911</issn><issn>2050-3911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9UEtLxDAQDqLgsu7NH9CbF7vm0SSb41p8wYIXPZc0mUqkTUrSFfbfm9I9eJJhnnwzfPMhdEvwlmDFHsYJxhy0JZReoBXFHJdMEXL5p75Gm5S-McYES4krskL1Yzh6q-OpMMFbN7ngU9GFOLdpitr5qUinNMGQCueLHx2dnkG6L8bovHFjDzfoqtN9gs05r9Hn89NH_Voe3l_e6v2hNEzuprI1SgOhQojK4rblxiq9q7QEqyXnkhGmKKdC6o6yFkBVFATHShBRwU4xztZou9z90j00znchEzTZLAwu84XO5fleSiZV9nnhflkwMaQUoWsy5yE_2xDczKI1s2jNWbQMv1vg4Tj-j_wFJEhvGA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Izumi, Keisuke</creator><creator>Shimada, Keigo</creator><creator>Tomonari, Kyosuke</creator><creator>Yamaguchi, Masahide</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20231001</creationdate><title>Boundary conditions for constraint systems in variational principle</title><author>Izumi, Keisuke ; Shimada, Keigo ; Tomonari, Kyosuke ; Yamaguchi, Masahide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-bc9ae126664d0bb5cd9a84a7eda7557313925267af23bee942e65096164e89353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary value problems</topic><topic>Gauge fields (Physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izumi, Keisuke</creatorcontrib><creatorcontrib>Shimada, Keigo</creatorcontrib><creatorcontrib>Tomonari, Kyosuke</creatorcontrib><creatorcontrib>Yamaguchi, Masahide</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>Progress of Theoretical and Experimental Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izumi, Keisuke</au><au>Shimada, Keigo</au><au>Tomonari, Kyosuke</au><au>Yamaguchi, Masahide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary conditions for constraint systems in variational principle</atitle><jtitle>Progress of Theoretical and Experimental Physics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>2023</volume><issue>10</issue><spage>1</spage><pages>1-</pages><issn>2050-3911</issn><eissn>2050-3911</eissn><abstract>Abstract We show the well-posed variational principle in constraint systems. In a naive procedure of the variational principle with constraints, the proper number of boundary conditions does not match that of physical degrees of freedom , which implies that, even in theories with up to first-order derivatives, the minimal (or extremal) value of the action with the boundary terms is not a solution of the equation of motion in the Dirac procedure of constrained systems. We propose specific and concrete steps to solve this problem. These steps utilize the Hamilton formalism, which allows us to separate the physical degrees of freedom from the constraints. This reveals the physical degrees of freedom that are necessary to be fixed on boundaries, and also enables us to specify the variables to be fixed and the surface terms.</abstract><pub>Oxford University Press</pub><doi>10.1093/ptep/ptad122</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-3911
ispartof Progress of Theoretical and Experimental Physics, 2023-10, Vol.2023 (10), p.1
issn 2050-3911
2050-3911
language eng
recordid cdi_crossref_primary_10_1093_ptep_ptad122
source DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Boundary value problems
Gauge fields (Physics)
title Boundary conditions for constraint systems in variational principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20conditions%20for%20constraint%20systems%20in%20variational%20principle&rft.jtitle=Progress%20of%20Theoretical%20and%20Experimental%20Physics&rft.au=Izumi,%20Keisuke&rft.date=2023-10-01&rft.volume=2023&rft.issue=10&rft.spage=1&rft.pages=1-&rft.issn=2050-3911&rft.eissn=2050-3911&rft_id=info:doi/10.1093/ptep/ptad122&rft_dat=%3Cgale_cross%3EA773797375%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A773797375&rft_oup_id=10.1093/ptep/ptad122&rfr_iscdi=true