Tracy–Widom method for Jánossy density and joint distribution of extremal eigenvalues of random matrices
Abstract The Jánossy density for a determinantal point process is the probability density that an interval $I$ contains exactly $p$ points except for those at $k$ designated loci. The Jánossy density associated with an integrable kernel $\mathbf{K}\doteq (\varphi(x)\psi(y)-\psi(x)\varphi(y))/(x-y)$...
Gespeichert in:
Veröffentlicht in: | Progress of Theoretical and Experimental Physics 2021-11, Vol.2021 (11), p.1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | Progress of Theoretical and Experimental Physics |
container_volume | 2021 |
creator | Nishigaki, Shinsuke M |
description | Abstract
The Jánossy density for a determinantal point process is the probability density that an interval $I$ contains exactly $p$ points except for those at $k$ designated loci. The Jánossy density associated with an integrable kernel $\mathbf{K}\doteq (\varphi(x)\psi(y)-\psi(x)\varphi(y))/(x-y)$ is shown to be expressed as a Fredholm determinant $\mathrm{Det}(\mathbb{I}-\tilde{\mathbf{K}}|_I)$ of a transformed kernel $\tilde{\mathbf{K}}\doteq (\tilde{\varphi}(x)\tilde{\psi}(y)-\tilde{\psi}(x)\tilde{\varphi}(y))/(x-y)$. We observe that $\tilde{\mathbf{K}}$ satisfies Tracy and Widom’s criteria if $\mathbf{K}$ does, because of the structure that the map $(\varphi, \psi)\mapsto (\tilde{\varphi}, \tilde{\psi})$ is a meromorphic $\mathrm{SL}(2,\mathbb{R})$ gauge transformation between covariantly constant sections. This observation enables application of the Tracy–Widom method [7] to Jánossy densities, expressed in terms of a solution to a system of differential equations in the endpoints of the interval. Our approach does not explicitly refer to isomonodromic systems associated with Painlevé equations employed in the preceding works. As illustrative examples we compute Jánossy densities with $k=1, p=0$ for Airy and Bessel kernels, related to the joint distributions of the two largest eigenvalues of random Hermitian matrices and of the two smallest singular values of random complex matrices. |
doi_str_mv | 10.1093/ptep/ptab123 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ptep_ptab123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A773797425</galeid><oup_id>10.1093/ptep/ptab123</oup_id><sourcerecordid>A773797425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-96de1c98e5cc0e5a2345b98bd832dd148bc27892d3edbdeabcea7b4da5bd5f943</originalsourceid><addsrcrecordid>eNp9UEtOwzAUtBBIVNAdB_CODSl2HJNkWVV8VYlNEcvIn5fiksSR7SKy4w6cgLNwE06Co3bBCj3pvafRzEgzCJ1RMqOkZJd9gD4uIWnKDtAkJZwkrKT08M9_jKbebwghlOQ5yegEva6cUMPPx-ez0bbFLYQXq3FtHX74_uqs9wPW0HkTBiw6jTfWdAFr44MzchuM7bCtMbwHB61oMJg1dG-i2YIfcRclo6mIbAX-FB3VovEw3d8T9HRzvVrcJcvH2_vFfJkoTnhIyisNVJUFcKUIcJGyjMuykLpgqdY0K6RK86JMNQMtNQipQOQy04JLzesyYydotvNdiwYq09U2xJBxNLRG2Q5qE_F5nrO8zLOUR8HFTqBcTOygrnpnWuGGipJqLLcay6325Ub6-Y5ut_3_zF9SA4E-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tracy–Widom method for Jánossy density and joint distribution of extremal eigenvalues of random matrices</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>Oxford Academic Journals (Open Access)</source><creator>Nishigaki, Shinsuke M</creator><creatorcontrib>Nishigaki, Shinsuke M</creatorcontrib><description>Abstract
The Jánossy density for a determinantal point process is the probability density that an interval $I$ contains exactly $p$ points except for those at $k$ designated loci. The Jánossy density associated with an integrable kernel $\mathbf{K}\doteq (\varphi(x)\psi(y)-\psi(x)\varphi(y))/(x-y)$ is shown to be expressed as a Fredholm determinant $\mathrm{Det}(\mathbb{I}-\tilde{\mathbf{K}}|_I)$ of a transformed kernel $\tilde{\mathbf{K}}\doteq (\tilde{\varphi}(x)\tilde{\psi}(y)-\tilde{\psi}(x)\tilde{\varphi}(y))/(x-y)$. We observe that $\tilde{\mathbf{K}}$ satisfies Tracy and Widom’s criteria if $\mathbf{K}$ does, because of the structure that the map $(\varphi, \psi)\mapsto (\tilde{\varphi}, \tilde{\psi})$ is a meromorphic $\mathrm{SL}(2,\mathbb{R})$ gauge transformation between covariantly constant sections. This observation enables application of the Tracy–Widom method [7] to Jánossy densities, expressed in terms of a solution to a system of differential equations in the endpoints of the interval. Our approach does not explicitly refer to isomonodromic systems associated with Painlevé equations employed in the preceding works. As illustrative examples we compute Jánossy densities with $k=1, p=0$ for Airy and Bessel kernels, related to the joint distributions of the two largest eigenvalues of random Hermitian matrices and of the two smallest singular values of random complex matrices.</description><identifier>ISSN: 2050-3911</identifier><identifier>EISSN: 2050-3911</identifier><identifier>DOI: 10.1093/ptep/ptab123</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Distribution (Probability theory) ; Methods</subject><ispartof>Progress of Theoretical and Experimental Physics, 2021-11, Vol.2021 (11), p.1</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Physical Society of Japan. 2021</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-96de1c98e5cc0e5a2345b98bd832dd148bc27892d3edbdeabcea7b4da5bd5f943</citedby><cites>FETCH-LOGICAL-c505t-96de1c98e5cc0e5a2345b98bd832dd148bc27892d3edbdeabcea7b4da5bd5f943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1598,27901,27902</link.rule.ids></links><search><creatorcontrib>Nishigaki, Shinsuke M</creatorcontrib><title>Tracy–Widom method for Jánossy density and joint distribution of extremal eigenvalues of random matrices</title><title>Progress of Theoretical and Experimental Physics</title><description>Abstract
The Jánossy density for a determinantal point process is the probability density that an interval $I$ contains exactly $p$ points except for those at $k$ designated loci. The Jánossy density associated with an integrable kernel $\mathbf{K}\doteq (\varphi(x)\psi(y)-\psi(x)\varphi(y))/(x-y)$ is shown to be expressed as a Fredholm determinant $\mathrm{Det}(\mathbb{I}-\tilde{\mathbf{K}}|_I)$ of a transformed kernel $\tilde{\mathbf{K}}\doteq (\tilde{\varphi}(x)\tilde{\psi}(y)-\tilde{\psi}(x)\tilde{\varphi}(y))/(x-y)$. We observe that $\tilde{\mathbf{K}}$ satisfies Tracy and Widom’s criteria if $\mathbf{K}$ does, because of the structure that the map $(\varphi, \psi)\mapsto (\tilde{\varphi}, \tilde{\psi})$ is a meromorphic $\mathrm{SL}(2,\mathbb{R})$ gauge transformation between covariantly constant sections. This observation enables application of the Tracy–Widom method [7] to Jánossy densities, expressed in terms of a solution to a system of differential equations in the endpoints of the interval. Our approach does not explicitly refer to isomonodromic systems associated with Painlevé equations employed in the preceding works. As illustrative examples we compute Jánossy densities with $k=1, p=0$ for Airy and Bessel kernels, related to the joint distributions of the two largest eigenvalues of random Hermitian matrices and of the two smallest singular values of random complex matrices.</description><subject>Distribution (Probability theory)</subject><subject>Methods</subject><issn>2050-3911</issn><issn>2050-3911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9UEtOwzAUtBBIVNAdB_CODSl2HJNkWVV8VYlNEcvIn5fiksSR7SKy4w6cgLNwE06Co3bBCj3pvafRzEgzCJ1RMqOkZJd9gD4uIWnKDtAkJZwkrKT08M9_jKbebwghlOQ5yegEva6cUMPPx-ez0bbFLYQXq3FtHX74_uqs9wPW0HkTBiw6jTfWdAFr44MzchuM7bCtMbwHB61oMJg1dG-i2YIfcRclo6mIbAX-FB3VovEw3d8T9HRzvVrcJcvH2_vFfJkoTnhIyisNVJUFcKUIcJGyjMuykLpgqdY0K6RK86JMNQMtNQipQOQy04JLzesyYydotvNdiwYq09U2xJBxNLRG2Q5qE_F5nrO8zLOUR8HFTqBcTOygrnpnWuGGipJqLLcay6325Ub6-Y5ut_3_zF9SA4E-</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Nishigaki, Shinsuke M</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20211101</creationdate><title>Tracy–Widom method for Jánossy density and joint distribution of extremal eigenvalues of random matrices</title><author>Nishigaki, Shinsuke M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-96de1c98e5cc0e5a2345b98bd832dd148bc27892d3edbdeabcea7b4da5bd5f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Distribution (Probability theory)</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishigaki, Shinsuke M</creatorcontrib><collection>Oxford Academic Journals (Open Access)</collection><collection>CrossRef</collection><collection>Gale Academic OneFile Select</collection><jtitle>Progress of Theoretical and Experimental Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishigaki, Shinsuke M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracy–Widom method for Jánossy density and joint distribution of extremal eigenvalues of random matrices</atitle><jtitle>Progress of Theoretical and Experimental Physics</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>2021</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>2050-3911</issn><eissn>2050-3911</eissn><abstract>Abstract
The Jánossy density for a determinantal point process is the probability density that an interval $I$ contains exactly $p$ points except for those at $k$ designated loci. The Jánossy density associated with an integrable kernel $\mathbf{K}\doteq (\varphi(x)\psi(y)-\psi(x)\varphi(y))/(x-y)$ is shown to be expressed as a Fredholm determinant $\mathrm{Det}(\mathbb{I}-\tilde{\mathbf{K}}|_I)$ of a transformed kernel $\tilde{\mathbf{K}}\doteq (\tilde{\varphi}(x)\tilde{\psi}(y)-\tilde{\psi}(x)\tilde{\varphi}(y))/(x-y)$. We observe that $\tilde{\mathbf{K}}$ satisfies Tracy and Widom’s criteria if $\mathbf{K}$ does, because of the structure that the map $(\varphi, \psi)\mapsto (\tilde{\varphi}, \tilde{\psi})$ is a meromorphic $\mathrm{SL}(2,\mathbb{R})$ gauge transformation between covariantly constant sections. This observation enables application of the Tracy–Widom method [7] to Jánossy densities, expressed in terms of a solution to a system of differential equations in the endpoints of the interval. Our approach does not explicitly refer to isomonodromic systems associated with Painlevé equations employed in the preceding works. As illustrative examples we compute Jánossy densities with $k=1, p=0$ for Airy and Bessel kernels, related to the joint distributions of the two largest eigenvalues of random Hermitian matrices and of the two smallest singular values of random complex matrices.</abstract><pub>Oxford University Press</pub><doi>10.1093/ptep/ptab123</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-3911 |
ispartof | Progress of Theoretical and Experimental Physics, 2021-11, Vol.2021 (11), p.1 |
issn | 2050-3911 2050-3911 |
language | eng |
recordid | cdi_crossref_primary_10_1093_ptep_ptab123 |
source | DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; Oxford Academic Journals (Open Access) |
subjects | Distribution (Probability theory) Methods |
title | Tracy–Widom method for Jánossy density and joint distribution of extremal eigenvalues of random matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracy%E2%80%93Widom%20method%20for%20J%C3%A1nossy%20density%20and%20joint%20distribution%20of%20extremal%20eigenvalues%20of%20random%20matrices&rft.jtitle=Progress%20of%20Theoretical%20and%20Experimental%20Physics&rft.au=Nishigaki,%20Shinsuke%20M&rft.date=2021-11-01&rft.volume=2021&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=2050-3911&rft.eissn=2050-3911&rft_id=info:doi/10.1093/ptep/ptab123&rft_dat=%3Cgale_cross%3EA773797425%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A773797425&rft_oup_id=10.1093/ptep/ptab123&rfr_iscdi=true |