Taxonomic and functional differences between winter and summer crustacean zooplankton communities in lakes across a trophic gradient

Abstract Despite increasing interest in winter limnology, few studies have examined under-ice zooplankton communities and the factors shaping them in different types of temperate lakes. To better understand drivers of zooplankton community structure in winter and summer, we sampled 13 lakes across a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plankton research 2021-09, Vol.43 (5), p.732-750
Hauptverfasser: Shchapov, K, Wilburn, P, Bramburger, A J, Silsbe, G M, Olmanson, L, Crawford, C J, Litchman, E, Ozersky, T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Despite increasing interest in winter limnology, few studies have examined under-ice zooplankton communities and the factors shaping them in different types of temperate lakes. To better understand drivers of zooplankton community structure in winter and summer, we sampled 13 lakes across a large trophic status gradient for crustacean zooplankton abundance, taxonomic and functional community composition and C/N stable isotopes. Average winter zooplankton densities were one-third of summer densities across the study lakes. Proportionally, cladocerans were more abundant in summer than winter, with the opposite pattern for calanoids and cyclopoids. In green (eutrophic) lakes, zooplankton densities were higher under the ice than in brown (dystrophic) and blue (oligotrophic) lakes, suggesting better conditions for zooplankton in productive lakes during winter. Overall, zooplankton communities were more similar across lakes under the ice than during the open water season. Feeding group classification showed a decrease in herbivore abundance and an increase in predators from summer to winter. C/N stable isotope results suggested higher lipid content in overwintering zooplankton and potentially increased reliance on the microbial loop by winter zooplankton. Our results show substantial variation in the seasonality of zooplankton communities in different lake types and identify some of the factors responsible for this variation.
ISSN:0142-7873
1464-3774
DOI:10.1093/plankt/fbab050