Naturalism, Truth and Beauty in Mathematics
Can a scientific naturalist be a mathematical realist? I review some arguments, derived largely from the writings of Penelope Maddy, for a negative answer. The rejoinder from the realist side is that the irrealist cannot explain, as well as the realist can, why a naturalist should grant the mathemat...
Gespeichert in:
Veröffentlicht in: | Philosophia mathematica 2007-06, Vol.15 (2), p.141-165 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | 2 |
container_start_page | 141 |
container_title | Philosophia mathematica |
container_volume | 15 |
creator | Moore, Matthew E. |
description | Can a scientific naturalist be a mathematical realist? I review some arguments, derived largely from the writings of Penelope Maddy, for a negative answer. The rejoinder from the realist side is that the irrealist cannot explain, as well as the realist can, why a naturalist should grant the mathematician the degree of methodological autonomy that the irrealist's own arguments require. Thus a naturalist, as such, has at least as much reason to embrace mathematical realism as to embrace irrealism. |
doi_str_mv | 10.1093/philmat/nkm003 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_philmat_nkm003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/philmat/nkm003</oup_id><sourcerecordid>10.1093/philmat/nkm003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-81d7da3c85ee1fbb96294dee310253db704c679ff589e4a274b21f83eb19e82e3</originalsourceid><addsrcrecordid>eNqFj99LwzAUhYMoWKevPvdVtFtukzbJo465qfMHMmH4EtL2ltat20hScP-9lQ5ffbqcy3cOfIRcAh0CVWy0q-p1Y_xos2ooZUckAMF5lHKaHpOg-0AkKahTcubcVxdTJWVArl-Mb61Z1665CRe29VVoNkV4h6b1-7DehM_GV9jN1rk7JyelWTu8ONwB-bifLMazaP46fRjfzqMcJPhIQiEKw3KZIEKZZSqNFS8QGdA4YUUmKM9TocoykQq5iQXPYiglwwwUyhjZgAz73dxunbNY6p2tG2P3Gqj-VdUHVd2rdoWrvrBtd_-zUc_WzuP3H23sSqeCiUTPlp86fp_y8fLpTT-yHwnyZrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Naturalism, Truth and Beauty in Mathematics</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Moore, Matthew E.</creator><creatorcontrib>Moore, Matthew E.</creatorcontrib><description>Can a scientific naturalist be a mathematical realist? I review some arguments, derived largely from the writings of Penelope Maddy, for a negative answer. The rejoinder from the realist side is that the irrealist cannot explain, as well as the realist can, why a naturalist should grant the mathematician the degree of methodological autonomy that the irrealist's own arguments require. Thus a naturalist, as such, has at least as much reason to embrace mathematical realism as to embrace irrealism.</description><identifier>ISSN: 0031-8019</identifier><identifier>EISSN: 1744-6406</identifier><identifier>DOI: 10.1093/philmat/nkm003</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Philosophia mathematica, 2007-06, Vol.15 (2), p.141-165</ispartof><rights>Copyright © The Author 2007. Published by Oxford University Press. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1583,27923,27924</link.rule.ids></links><search><creatorcontrib>Moore, Matthew E.</creatorcontrib><title>Naturalism, Truth and Beauty in Mathematics</title><title>Philosophia mathematica</title><addtitle>Philos Math</addtitle><addtitle>Philos Math</addtitle><description>Can a scientific naturalist be a mathematical realist? I review some arguments, derived largely from the writings of Penelope Maddy, for a negative answer. The rejoinder from the realist side is that the irrealist cannot explain, as well as the realist can, why a naturalist should grant the mathematician the degree of methodological autonomy that the irrealist's own arguments require. Thus a naturalist, as such, has at least as much reason to embrace mathematical realism as to embrace irrealism.</description><issn>0031-8019</issn><issn>1744-6406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFj99LwzAUhYMoWKevPvdVtFtukzbJo465qfMHMmH4EtL2ltat20hScP-9lQ5ffbqcy3cOfIRcAh0CVWy0q-p1Y_xos2ooZUckAMF5lHKaHpOg-0AkKahTcubcVxdTJWVArl-Mb61Z1665CRe29VVoNkV4h6b1-7DehM_GV9jN1rk7JyelWTu8ONwB-bifLMazaP46fRjfzqMcJPhIQiEKw3KZIEKZZSqNFS8QGdA4YUUmKM9TocoykQq5iQXPYiglwwwUyhjZgAz73dxunbNY6p2tG2P3Gqj-VdUHVd2rdoWrvrBtd_-zUc_WzuP3H23sSqeCiUTPlp86fp_y8fLpTT-yHwnyZrg</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Moore, Matthew E.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200706</creationdate><title>Naturalism, Truth and Beauty in Mathematics</title><author>Moore, Matthew E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-81d7da3c85ee1fbb96294dee310253db704c679ff589e4a274b21f83eb19e82e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Matthew E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Philosophia mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Matthew E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Naturalism, Truth and Beauty in Mathematics</atitle><jtitle>Philosophia mathematica</jtitle><stitle>Philos Math</stitle><addtitle>Philos Math</addtitle><date>2007-06</date><risdate>2007</risdate><volume>15</volume><issue>2</issue><spage>141</spage><epage>165</epage><pages>141-165</pages><issn>0031-8019</issn><eissn>1744-6406</eissn><abstract>Can a scientific naturalist be a mathematical realist? I review some arguments, derived largely from the writings of Penelope Maddy, for a negative answer. The rejoinder from the realist side is that the irrealist cannot explain, as well as the realist can, why a naturalist should grant the mathematician the degree of methodological autonomy that the irrealist's own arguments require. Thus a naturalist, as such, has at least as much reason to embrace mathematical realism as to embrace irrealism.</abstract><pub>Oxford University Press</pub><doi>10.1093/philmat/nkm003</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8019 |
ispartof | Philosophia mathematica, 2007-06, Vol.15 (2), p.141-165 |
issn | 0031-8019 1744-6406 |
language | eng |
recordid | cdi_crossref_primary_10_1093_philmat_nkm003 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Naturalism, Truth and Beauty in Mathematics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Naturalism,%20Truth%20and%20Beauty%20in%20Mathematics&rft.jtitle=Philosophia%20mathematica&rft.au=Moore,%20Matthew%20E.&rft.date=2007-06&rft.volume=15&rft.issue=2&rft.spage=141&rft.epage=165&rft.pages=141-165&rft.issn=0031-8019&rft.eissn=1744-6406&rft_id=info:doi/10.1093/philmat/nkm003&rft_dat=%3Coup_cross%3E10.1093/philmat/nkm003%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/philmat/nkm003&rfr_iscdi=true |