NAI2 and TSA1 Drive Differentiation of Constitutive and Inducible ER Body Formation in Brassicaceae

Abstract Brassicaceae and closely related species develop unique endoplasmic reticulum (ER)-derived structures called ER bodies, which accumulate β-glucosidases/myrosinases that are involved in chemical defense. There are two different types of ER bodies: ER bodies constitutively present in seedling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and cell physiology 2020-04, Vol.61 (4), p.722-734
Hauptverfasser: Stefanik, Natalia, Bizan, Jakub, Wilkens, Alwine, Tarnawska-Glatt, Katarzyna, Goto-Yamada, Shino, Strzałka, Kazimierz, Nishimura, Mikio, Hara-Nishimura, Ikuko, Yamada, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 734
container_issue 4
container_start_page 722
container_title Plant and cell physiology
container_volume 61
creator Stefanik, Natalia
Bizan, Jakub
Wilkens, Alwine
Tarnawska-Glatt, Katarzyna
Goto-Yamada, Shino
Strzałka, Kazimierz
Nishimura, Mikio
Hara-Nishimura, Ikuko
Yamada, Kenji
description Abstract Brassicaceae and closely related species develop unique endoplasmic reticulum (ER)-derived structures called ER bodies, which accumulate β-glucosidases/myrosinases that are involved in chemical defense. There are two different types of ER bodies: ER bodies constitutively present in seedlings (cER bodies) and ER bodies in rosette leaves induced by treatment with the wounding hormone jasmonate (JA) (iER bodies). Here, we show that At-α whole-genome duplication (WGD) generated the paralogous genes NAI2 and TSA1, which consequently drive differentiation of cER bodies and iER bodies in Brassicaceae plants. In Arabidopsis, NAI2 is expressed in seedlings where cER bodies are formed, whereas TSA1 is expressed in JA-treated leaves where iER bodies are formed. We found that the expression of NAI2 in seedlings and the JA inducibility of TSA1 are conserved across other Brassicaceae plants. The accumulation of NAI2 transcripts in Arabidopsis seedlings is dependent on the transcription factor NAI1, whereas the JA induction of TSA1 in rosette leaves is dependent on MYC2, MYC3 and MYC4. We discovered regions of microsynteny, including the NAI2/TSA1 genes, but the promoter regions are differentiated between TSA1 and NAI2 genes in Brassicaceae. This suggests that the divergence of function between NAI2 and TSA1 occurred immediately after WGD in ancestral Brassicaceae plants to differentiate the formation of iER and cER bodies. Our findings indicate that At-α WGD enabled diversification of defense strategies, which may have contributed to the massive diversification of Brassicaceae plants.
doi_str_mv 10.1093/pcp/pcz236
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_pcp_pcz236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/pcp/pcz236</oup_id><sourcerecordid>10.1093/pcp/pcz236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-29d3e2e235810088e18e98f96ad92087a7d5f735f026cd0fe0c7109ded48439d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlYv_gDJxYuwOkm6m-yxn1ooClrPS5pMINLuLsmuUH-9W1Y9ehhmYJ55YR5CrhncM8jFQ23qrr64yE7IkI0lS3JIxSkZAgiegFRsQC5i_ADoZgHnZCCYkrnM-JCY58mKU11aunmbMDoP_hPp3DuHAcvG68ZXJa0cnVVlbHzTNsf9EV-VtjV-u0O6eKXTyh7osgr7nvclnQYdozfaoMZLcub0LuLVTx-R9-ViM3tK1i-Pq9lknRihRJPw3ArkyEWqGIBSyBTmyuWZtjkHJbW0qZMidcAzY8EhGNn9b9GO1Vh0xyNy1-eaUMUY0BV18HsdDgWD4miq6EwVvakOvunhut3u0f6hv2o64LYHqrb-L-gbpl1w2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NAI2 and TSA1 Drive Differentiation of Constitutive and Inducible ER Body Formation in Brassicaceae</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Stefanik, Natalia ; Bizan, Jakub ; Wilkens, Alwine ; Tarnawska-Glatt, Katarzyna ; Goto-Yamada, Shino ; Strzałka, Kazimierz ; Nishimura, Mikio ; Hara-Nishimura, Ikuko ; Yamada, Kenji</creator><creatorcontrib>Stefanik, Natalia ; Bizan, Jakub ; Wilkens, Alwine ; Tarnawska-Glatt, Katarzyna ; Goto-Yamada, Shino ; Strzałka, Kazimierz ; Nishimura, Mikio ; Hara-Nishimura, Ikuko ; Yamada, Kenji</creatorcontrib><description>Abstract Brassicaceae and closely related species develop unique endoplasmic reticulum (ER)-derived structures called ER bodies, which accumulate β-glucosidases/myrosinases that are involved in chemical defense. There are two different types of ER bodies: ER bodies constitutively present in seedlings (cER bodies) and ER bodies in rosette leaves induced by treatment with the wounding hormone jasmonate (JA) (iER bodies). Here, we show that At-α whole-genome duplication (WGD) generated the paralogous genes NAI2 and TSA1, which consequently drive differentiation of cER bodies and iER bodies in Brassicaceae plants. In Arabidopsis, NAI2 is expressed in seedlings where cER bodies are formed, whereas TSA1 is expressed in JA-treated leaves where iER bodies are formed. We found that the expression of NAI2 in seedlings and the JA inducibility of TSA1 are conserved across other Brassicaceae plants. The accumulation of NAI2 transcripts in Arabidopsis seedlings is dependent on the transcription factor NAI1, whereas the JA induction of TSA1 in rosette leaves is dependent on MYC2, MYC3 and MYC4. We discovered regions of microsynteny, including the NAI2/TSA1 genes, but the promoter regions are differentiated between TSA1 and NAI2 genes in Brassicaceae. This suggests that the divergence of function between NAI2 and TSA1 occurred immediately after WGD in ancestral Brassicaceae plants to differentiate the formation of iER and cER bodies. Our findings indicate that At-α WGD enabled diversification of defense strategies, which may have contributed to the massive diversification of Brassicaceae plants.</description><identifier>ISSN: 0032-0781</identifier><identifier>EISSN: 1471-9053</identifier><identifier>DOI: 10.1093/pcp/pcz236</identifier><identifier>PMID: 31879762</identifier><language>eng</language><publisher>Japan: Oxford University Press</publisher><subject>Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Brassicaceae - genetics ; Brassicaceae - metabolism ; Calcium-Binding Proteins ; Cyclopentanes - pharmacology ; DNA, Plant - genetics ; DNA, Plant - isolation &amp; purification ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - metabolism ; Gene Duplication ; Gene Expression Regulation, Plant ; Oxylipins - pharmacology ; Phylogeny ; Plant Leaves - metabolism ; Promoter Regions, Genetic ; Seedlings - genetics ; Seedlings - metabolism ; Trans-Activators - genetics ; Trans-Activators - metabolism</subject><ispartof>Plant and cell physiology, 2020-04, Vol.61 (4), p.722-734</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-29d3e2e235810088e18e98f96ad92087a7d5f735f026cd0fe0c7109ded48439d3</citedby><cites>FETCH-LOGICAL-c383t-29d3e2e235810088e18e98f96ad92087a7d5f735f026cd0fe0c7109ded48439d3</cites><orcidid>0000-0003-4872-3729 ; 0000-0002-4897-9735 ; 0000-0001-8814-1593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31879762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stefanik, Natalia</creatorcontrib><creatorcontrib>Bizan, Jakub</creatorcontrib><creatorcontrib>Wilkens, Alwine</creatorcontrib><creatorcontrib>Tarnawska-Glatt, Katarzyna</creatorcontrib><creatorcontrib>Goto-Yamada, Shino</creatorcontrib><creatorcontrib>Strzałka, Kazimierz</creatorcontrib><creatorcontrib>Nishimura, Mikio</creatorcontrib><creatorcontrib>Hara-Nishimura, Ikuko</creatorcontrib><creatorcontrib>Yamada, Kenji</creatorcontrib><title>NAI2 and TSA1 Drive Differentiation of Constitutive and Inducible ER Body Formation in Brassicaceae</title><title>Plant and cell physiology</title><addtitle>Plant Cell Physiol</addtitle><description>Abstract Brassicaceae and closely related species develop unique endoplasmic reticulum (ER)-derived structures called ER bodies, which accumulate β-glucosidases/myrosinases that are involved in chemical defense. There are two different types of ER bodies: ER bodies constitutively present in seedlings (cER bodies) and ER bodies in rosette leaves induced by treatment with the wounding hormone jasmonate (JA) (iER bodies). Here, we show that At-α whole-genome duplication (WGD) generated the paralogous genes NAI2 and TSA1, which consequently drive differentiation of cER bodies and iER bodies in Brassicaceae plants. In Arabidopsis, NAI2 is expressed in seedlings where cER bodies are formed, whereas TSA1 is expressed in JA-treated leaves where iER bodies are formed. We found that the expression of NAI2 in seedlings and the JA inducibility of TSA1 are conserved across other Brassicaceae plants. The accumulation of NAI2 transcripts in Arabidopsis seedlings is dependent on the transcription factor NAI1, whereas the JA induction of TSA1 in rosette leaves is dependent on MYC2, MYC3 and MYC4. We discovered regions of microsynteny, including the NAI2/TSA1 genes, but the promoter regions are differentiated between TSA1 and NAI2 genes in Brassicaceae. This suggests that the divergence of function between NAI2 and TSA1 occurred immediately after WGD in ancestral Brassicaceae plants to differentiate the formation of iER and cER bodies. Our findings indicate that At-α WGD enabled diversification of defense strategies, which may have contributed to the massive diversification of Brassicaceae plants.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Brassicaceae - genetics</subject><subject>Brassicaceae - metabolism</subject><subject>Calcium-Binding Proteins</subject><subject>Cyclopentanes - pharmacology</subject><subject>DNA, Plant - genetics</subject><subject>DNA, Plant - isolation &amp; purification</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Gene Duplication</subject><subject>Gene Expression Regulation, Plant</subject><subject>Oxylipins - pharmacology</subject><subject>Phylogeny</subject><subject>Plant Leaves - metabolism</subject><subject>Promoter Regions, Genetic</subject><subject>Seedlings - genetics</subject><subject>Seedlings - metabolism</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><issn>0032-0781</issn><issn>1471-9053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlYv_gDJxYuwOkm6m-yxn1ooClrPS5pMINLuLsmuUH-9W1Y9ehhmYJ55YR5CrhncM8jFQ23qrr64yE7IkI0lS3JIxSkZAgiegFRsQC5i_ADoZgHnZCCYkrnM-JCY58mKU11aunmbMDoP_hPp3DuHAcvG68ZXJa0cnVVlbHzTNsf9EV-VtjV-u0O6eKXTyh7osgr7nvclnQYdozfaoMZLcub0LuLVTx-R9-ViM3tK1i-Pq9lknRihRJPw3ArkyEWqGIBSyBTmyuWZtjkHJbW0qZMidcAzY8EhGNn9b9GO1Vh0xyNy1-eaUMUY0BV18HsdDgWD4miq6EwVvakOvunhut3u0f6hv2o64LYHqrb-L-gbpl1w2Q</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Stefanik, Natalia</creator><creator>Bizan, Jakub</creator><creator>Wilkens, Alwine</creator><creator>Tarnawska-Glatt, Katarzyna</creator><creator>Goto-Yamada, Shino</creator><creator>Strzałka, Kazimierz</creator><creator>Nishimura, Mikio</creator><creator>Hara-Nishimura, Ikuko</creator><creator>Yamada, Kenji</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4872-3729</orcidid><orcidid>https://orcid.org/0000-0002-4897-9735</orcidid><orcidid>https://orcid.org/0000-0001-8814-1593</orcidid></search><sort><creationdate>20200401</creationdate><title>NAI2 and TSA1 Drive Differentiation of Constitutive and Inducible ER Body Formation in Brassicaceae</title><author>Stefanik, Natalia ; Bizan, Jakub ; Wilkens, Alwine ; Tarnawska-Glatt, Katarzyna ; Goto-Yamada, Shino ; Strzałka, Kazimierz ; Nishimura, Mikio ; Hara-Nishimura, Ikuko ; Yamada, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-29d3e2e235810088e18e98f96ad92087a7d5f735f026cd0fe0c7109ded48439d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Brassicaceae - genetics</topic><topic>Brassicaceae - metabolism</topic><topic>Calcium-Binding Proteins</topic><topic>Cyclopentanes - pharmacology</topic><topic>DNA, Plant - genetics</topic><topic>DNA, Plant - isolation &amp; purification</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Gene Duplication</topic><topic>Gene Expression Regulation, Plant</topic><topic>Oxylipins - pharmacology</topic><topic>Phylogeny</topic><topic>Plant Leaves - metabolism</topic><topic>Promoter Regions, Genetic</topic><topic>Seedlings - genetics</topic><topic>Seedlings - metabolism</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefanik, Natalia</creatorcontrib><creatorcontrib>Bizan, Jakub</creatorcontrib><creatorcontrib>Wilkens, Alwine</creatorcontrib><creatorcontrib>Tarnawska-Glatt, Katarzyna</creatorcontrib><creatorcontrib>Goto-Yamada, Shino</creatorcontrib><creatorcontrib>Strzałka, Kazimierz</creatorcontrib><creatorcontrib>Nishimura, Mikio</creatorcontrib><creatorcontrib>Hara-Nishimura, Ikuko</creatorcontrib><creatorcontrib>Yamada, Kenji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Plant and cell physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefanik, Natalia</au><au>Bizan, Jakub</au><au>Wilkens, Alwine</au><au>Tarnawska-Glatt, Katarzyna</au><au>Goto-Yamada, Shino</au><au>Strzałka, Kazimierz</au><au>Nishimura, Mikio</au><au>Hara-Nishimura, Ikuko</au><au>Yamada, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NAI2 and TSA1 Drive Differentiation of Constitutive and Inducible ER Body Formation in Brassicaceae</atitle><jtitle>Plant and cell physiology</jtitle><addtitle>Plant Cell Physiol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>61</volume><issue>4</issue><spage>722</spage><epage>734</epage><pages>722-734</pages><issn>0032-0781</issn><eissn>1471-9053</eissn><abstract>Abstract Brassicaceae and closely related species develop unique endoplasmic reticulum (ER)-derived structures called ER bodies, which accumulate β-glucosidases/myrosinases that are involved in chemical defense. There are two different types of ER bodies: ER bodies constitutively present in seedlings (cER bodies) and ER bodies in rosette leaves induced by treatment with the wounding hormone jasmonate (JA) (iER bodies). Here, we show that At-α whole-genome duplication (WGD) generated the paralogous genes NAI2 and TSA1, which consequently drive differentiation of cER bodies and iER bodies in Brassicaceae plants. In Arabidopsis, NAI2 is expressed in seedlings where cER bodies are formed, whereas TSA1 is expressed in JA-treated leaves where iER bodies are formed. We found that the expression of NAI2 in seedlings and the JA inducibility of TSA1 are conserved across other Brassicaceae plants. The accumulation of NAI2 transcripts in Arabidopsis seedlings is dependent on the transcription factor NAI1, whereas the JA induction of TSA1 in rosette leaves is dependent on MYC2, MYC3 and MYC4. We discovered regions of microsynteny, including the NAI2/TSA1 genes, but the promoter regions are differentiated between TSA1 and NAI2 genes in Brassicaceae. This suggests that the divergence of function between NAI2 and TSA1 occurred immediately after WGD in ancestral Brassicaceae plants to differentiate the formation of iER and cER bodies. Our findings indicate that At-α WGD enabled diversification of defense strategies, which may have contributed to the massive diversification of Brassicaceae plants.</abstract><cop>Japan</cop><pub>Oxford University Press</pub><pmid>31879762</pmid><doi>10.1093/pcp/pcz236</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4872-3729</orcidid><orcidid>https://orcid.org/0000-0002-4897-9735</orcidid><orcidid>https://orcid.org/0000-0001-8814-1593</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0781
ispartof Plant and cell physiology, 2020-04, Vol.61 (4), p.722-734
issn 0032-0781
1471-9053
language eng
recordid cdi_crossref_primary_10_1093_pcp_pcz236
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism
Brassicaceae - genetics
Brassicaceae - metabolism
Calcium-Binding Proteins
Cyclopentanes - pharmacology
DNA, Plant - genetics
DNA, Plant - isolation & purification
Endoplasmic Reticulum - genetics
Endoplasmic Reticulum - metabolism
Gene Duplication
Gene Expression Regulation, Plant
Oxylipins - pharmacology
Phylogeny
Plant Leaves - metabolism
Promoter Regions, Genetic
Seedlings - genetics
Seedlings - metabolism
Trans-Activators - genetics
Trans-Activators - metabolism
title NAI2 and TSA1 Drive Differentiation of Constitutive and Inducible ER Body Formation in Brassicaceae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NAI2%20and%20TSA1%20Drive%20Differentiation%20of%20Constitutive%20and%20Inducible%20ER%20Body%20Formation%20in%20Brassicaceae&rft.jtitle=Plant%20and%20cell%20physiology&rft.au=Stefanik,%20Natalia&rft.date=2020-04-01&rft.volume=61&rft.issue=4&rft.spage=722&rft.epage=734&rft.pages=722-734&rft.issn=0032-0781&rft.eissn=1471-9053&rft_id=info:doi/10.1093/pcp/pcz236&rft_dat=%3Coup_cross%3E10.1093/pcp/pcz236%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31879762&rft_oup_id=10.1093/pcp/pcz236&rfr_iscdi=true