Force-Free Black Hole Magnetospheres
It is argued that a force-free degenerate electrodynamic (FFDE) magnetosphere of a Kerr black hole with 0 $\lt$ $\Omega _{\rm F}$ $\lt$ ${\Omega_{\rm H}}$ consists of the outer classical and inner general-relativistic domains. This is described by a simple DC dual-circuit model, with dissipative mem...
Gespeichert in:
Veröffentlicht in: | Publications of the Astronomical Society of Japan 2009-10, Vol.61 (5), p.971-990 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is argued that a force-free degenerate electrodynamic (FFDE) magnetosphere of a Kerr black hole with 0
$\lt$
$\Omega _{\rm F}$
$\lt$
${\Omega_{\rm H}}$
consists of the outer classical and inner general-relativistic domains. This is described by a simple DC dual-circuit model, with dissipative membranes as two loads at a “force-free infinity surface” (S
$_{{\rm ff}\infty }$
) with
$\omega$
$=$
0 and at a “force-free horizon surface” (S
$_{\rm ffH}$
) with
$\omega$
$=$
${\Omega_{\rm H}}$
, where
$\omega$
,
${\Omega_{\rm H}}$
, and
$\Omega _{\rm F}$
are the frame-dragging, the horizon and the field line angular frequencies. It is beneath upper null surface, S
$_{\rm N}$
, at
$\omega$
$=$
$\Omega _{\rm F}$
between the two domains that dual unipolar batteries (double EMF’s) exist back-to-back, oppositely directed, with a pair-creation gap between. The total energy flux
${\boldsymbol{S}}_E$
is a linear sum of the two fluxes: the hole’s outward spin-down energy flux
${\boldsymbol{S}}_{\rm SD}$
originating at S
$_{\rm ffH}$
and the Poynting flux
$\boldsymbol{S}_{\rm EM}$
emitted at S
$_{\rm N}$
in both the outward and inward directions, with
${\boldsymbol{S}}_E$
being proportional to
$\Omega _{\rm F}$
,
${\boldsymbol{S}}_{\rm SD}$
to
$\omega$
and
$\boldsymbol{S}_{\rm EM}$
to (
$\Omega _{\rm F}$
$-$
$\omega$
) along each field line. Applying a perturbation method for a split-monopolar field with a spin-parameter
$h$
$\ll$
1, the analytic solution of the stream equation is given, and the double eigenvalue problem due to the `criticality condition’ at the outer/inner fast surfaces S
$_{\rm oF}$
/S
$_{\rm iF}$
and the `boundary condition’ at S
$_{\rm N}$
is solved to yield the final eigenvalue
$\Omega _{\rm F}$
, in terms of
${\Omega_{\rm H}}$
and
$f_{\rm H}$
$=$
0.5676. The ratio of the output power reaching S
$_{{\rm ff}\infty }$
to the dissipation on S
$_{\rm ffH}$
is
$\epsilon$
$=$
1
$+$
(4
$/$
5)(1
$-$
$f_{\rm H}$
)
$h^2$
. |
---|---|
ISSN: | 0004-6264 2053-051X |
DOI: | 10.1093/pasj/61.5.971 |