Electromagnetic Extraction of Energy from Kerr Black Holes
The energy extraction process from Kerr black holes is elucidated compared with that from pulsars in force-free degenerate electrodynamics (FFDE). It is argued for the force-free magnetosphere of a Kerr black hole in a steady axisymmetric state that the function of unipolar inductors in the presence...
Gespeichert in:
Veröffentlicht in: | Publications of the Astronomical Society of Japan 2006-12, Vol.58 (6), p.1047-1071 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The energy extraction process from Kerr black holes is elucidated compared with that from pulsars in force-free degenerate electrodynamics (FFDE). It is argued for the force-free magnetosphere of a Kerr black hole in a steady axisymmetric state that the function of unipolar inductors in the presence of global magnetic fluxes threading the horizon is equipped by a frame-dragging effect in the Kerr spacetime metric to the upper null surface,
$\mathrm{S}_{\mathrm{N}}$
, with the axial distance,
$\varpi_{\mathrm{N}}$
, where the local value of the angular velocity of the frame-dragging,
$\omega$
, is equal to the rotational frequency of each field line, i.e.,
$\omega(\varpi_{\mathrm{N}}) = \Omega_{\mathrm{F}}$
, and the rotational velocity of each field line,
$\boldsymbol{v}_{\mathrm{F}}$
, measured by “zero-angular-momentum-observers” changes in sign. There must be a pair-creation gap at
$\mathrm{S}_{\mathrm{N}}$
, from which the paired winds, ingoing and outgoing, are initiated. The poloidal electric current,
$I$
, for each wind is determined by solving the eigenvalue problem with the “criticality condition” imposed at the fast surfaces nearly at the horizon and at infinity, and the “current-closure condition” at
$\mathrm{S}_{\mathrm{N}}$
determines the ultimate eigenvalues of
$\Omega_{\mathrm{F}}$
and
$I$
in terms of the hole’s angular velocity,
$\Omega_{\mathrm{H}} = \omega(r_{\mathrm{H}})$
, and the distribution of the magnetic flux at the horizon. It is not in the ordinary ergosphere, but in the effective ergosphere in the region of
$\Omega_{\mathrm{H}} \gt \omega \gt \Omega_{\mathrm{F}}$
and
$\boldsymbol{v}_{\mathrm{F}} |
---|---|
ISSN: | 0004-6264 2053-051X |
DOI: | 10.1093/pasj/58.6.1047 |