EPCO-23. A SINGLE-CELL BASED PRECISION MEDICINE APPROACH USING GLIOBLASTOMA PATIENT-SPECIFIC MODELS

Glioblastoma is a heterogeneous tumor made up of cell states that evolve over time. We modeled tumor evolutionary trajectories during standard-of-care treatment using multimodal single-cell analysis of a primary tumor sample, corresponding mouse xenografts subjected to standard of care therapy, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2021-11, Vol.23 (Supplement_6), p.vi6-vi7
Hauptverfasser: Feroze, Abdullah, Park, James, Emerson, Samuel, Mihalas, Anca, Keene, Dirk, Cimino, Patrick, de Lomana, Adrian Lopez Garcia, Kannan, Kavya, Wu, Wei-Ju, Turkarslan, Serdar, Baliga, Nitin, Patel, Anoop
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page vi7
container_issue Supplement_6
container_start_page vi6
container_title Neuro-oncology (Charlottesville, Va.)
container_volume 23
creator Feroze, Abdullah
Park, James
Emerson, Samuel
Mihalas, Anca
Keene, Dirk
Cimino, Patrick
de Lomana, Adrian Lopez Garcia
Kannan, Kavya
Wu, Wei-Ju
Turkarslan, Serdar
Baliga, Nitin
Patel, Anoop
description Glioblastoma is a heterogeneous tumor made up of cell states that evolve over time. We modeled tumor evolutionary trajectories during standard-of-care treatment using multimodal single-cell analysis of a primary tumor sample, corresponding mouse xenografts subjected to standard of care therapy, and recurrent tumor at autopsy. We mined the multimodal data with single cell SYstems Genetics Network AnaLysis (scSYGNAL) to identify a network of 52 regulators that mediate treatment-induced shifts in xenograft tumor-cell states that were also reflected in recurrence. By integrating scSYGNAL-derived regulatory network information with transcription factor accessibility deviations derived from single-cell ATAC-seq data, we developed consensus networks that regulate subpopulations of primary and recurrent tumor cells. Finally, by matching targeted therapies to active regulatory networks underlying tumor evolutionary trajectories, we provide a framework for applying single-cell-based precision medicine approaches in a concurrent, neo-adjuvant, or recurrent setting. Our proof-of-concept work herein provides the basis for the development of a modeling and analytical system that enables single-cell characterization of an individual patient’s tumor and inferred therapeutic vulnerabilities. Although further validation is required, in the form of in vivo studies of these putative druggable targets, our preliminary analysis and results suggest that systems biology techniques can be used to infer and predict therapeutic vulnerabilities that are either selected or induced during standard-of-care treatment. Ultimately, the information gathered from such systematic modeling and analysis of individual tumors may inform clinical treatment in a more targeted manner and enable a rational, tailored precision medicine that accounts for intratumoral cell heterogeneity.
doi_str_mv 10.1093/neuonc/noab196.022
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_neuonc_noab196_022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_neuonc_noab196_022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c872-6f2645a028c4ea7a8b8dfa0ca05f7ff08a365f9b33979473ab749a2b22cd810a3</originalsourceid><addsrcrecordid>eNot0L1OwzAUBWALgUQpvACTX8Ctf2LHGV3XbS05cdSEOXLcWAJBixIx8Pa0tNM9wz1n-AB4JXhBcMGWx-HndIzL4yn0pBALTOkdmBFOGeJSiPv_TJHkJH8ET9P0gTElXJAZiKbWHlG2gAo2tto6g7RxDq5UY9aw3httG-srWJq11bYyUNX13iu9g2-Xd7h11q-calpfKlir1pqqRU19rm2shqVfG9c8g4cUPqfh5XbnoN2YVu-Q81urlUNR5hSJREXGA6YyZkPIg-zlIQUcA-YpTwnLwARPRc9YkRdZzkKfZ0WgPaXxIAkObA7odTaOp2kah9R9j-9fYfztCO4uSt1VqbspdWcl9gdMmVVC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EPCO-23. A SINGLE-CELL BASED PRECISION MEDICINE APPROACH USING GLIOBLASTOMA PATIENT-SPECIFIC MODELS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>PubMed Central</source><creator>Feroze, Abdullah ; Park, James ; Emerson, Samuel ; Mihalas, Anca ; Keene, Dirk ; Cimino, Patrick ; de Lomana, Adrian Lopez Garcia ; Kannan, Kavya ; Wu, Wei-Ju ; Turkarslan, Serdar ; Baliga, Nitin ; Patel, Anoop</creator><creatorcontrib>Feroze, Abdullah ; Park, James ; Emerson, Samuel ; Mihalas, Anca ; Keene, Dirk ; Cimino, Patrick ; de Lomana, Adrian Lopez Garcia ; Kannan, Kavya ; Wu, Wei-Ju ; Turkarslan, Serdar ; Baliga, Nitin ; Patel, Anoop</creatorcontrib><description>Glioblastoma is a heterogeneous tumor made up of cell states that evolve over time. We modeled tumor evolutionary trajectories during standard-of-care treatment using multimodal single-cell analysis of a primary tumor sample, corresponding mouse xenografts subjected to standard of care therapy, and recurrent tumor at autopsy. We mined the multimodal data with single cell SYstems Genetics Network AnaLysis (scSYGNAL) to identify a network of 52 regulators that mediate treatment-induced shifts in xenograft tumor-cell states that were also reflected in recurrence. By integrating scSYGNAL-derived regulatory network information with transcription factor accessibility deviations derived from single-cell ATAC-seq data, we developed consensus networks that regulate subpopulations of primary and recurrent tumor cells. Finally, by matching targeted therapies to active regulatory networks underlying tumor evolutionary trajectories, we provide a framework for applying single-cell-based precision medicine approaches in a concurrent, neo-adjuvant, or recurrent setting. Our proof-of-concept work herein provides the basis for the development of a modeling and analytical system that enables single-cell characterization of an individual patient’s tumor and inferred therapeutic vulnerabilities. Although further validation is required, in the form of in vivo studies of these putative druggable targets, our preliminary analysis and results suggest that systems biology techniques can be used to infer and predict therapeutic vulnerabilities that are either selected or induced during standard-of-care treatment. Ultimately, the information gathered from such systematic modeling and analysis of individual tumors may inform clinical treatment in a more targeted manner and enable a rational, tailored precision medicine that accounts for intratumoral cell heterogeneity.</description><identifier>ISSN: 1522-8517</identifier><identifier>EISSN: 1523-5866</identifier><identifier>DOI: 10.1093/neuonc/noab196.022</identifier><language>eng</language><ispartof>Neuro-oncology (Charlottesville, Va.), 2021-11, Vol.23 (Supplement_6), p.vi6-vi7</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Feroze, Abdullah</creatorcontrib><creatorcontrib>Park, James</creatorcontrib><creatorcontrib>Emerson, Samuel</creatorcontrib><creatorcontrib>Mihalas, Anca</creatorcontrib><creatorcontrib>Keene, Dirk</creatorcontrib><creatorcontrib>Cimino, Patrick</creatorcontrib><creatorcontrib>de Lomana, Adrian Lopez Garcia</creatorcontrib><creatorcontrib>Kannan, Kavya</creatorcontrib><creatorcontrib>Wu, Wei-Ju</creatorcontrib><creatorcontrib>Turkarslan, Serdar</creatorcontrib><creatorcontrib>Baliga, Nitin</creatorcontrib><creatorcontrib>Patel, Anoop</creatorcontrib><title>EPCO-23. A SINGLE-CELL BASED PRECISION MEDICINE APPROACH USING GLIOBLASTOMA PATIENT-SPECIFIC MODELS</title><title>Neuro-oncology (Charlottesville, Va.)</title><description>Glioblastoma is a heterogeneous tumor made up of cell states that evolve over time. We modeled tumor evolutionary trajectories during standard-of-care treatment using multimodal single-cell analysis of a primary tumor sample, corresponding mouse xenografts subjected to standard of care therapy, and recurrent tumor at autopsy. We mined the multimodal data with single cell SYstems Genetics Network AnaLysis (scSYGNAL) to identify a network of 52 regulators that mediate treatment-induced shifts in xenograft tumor-cell states that were also reflected in recurrence. By integrating scSYGNAL-derived regulatory network information with transcription factor accessibility deviations derived from single-cell ATAC-seq data, we developed consensus networks that regulate subpopulations of primary and recurrent tumor cells. Finally, by matching targeted therapies to active regulatory networks underlying tumor evolutionary trajectories, we provide a framework for applying single-cell-based precision medicine approaches in a concurrent, neo-adjuvant, or recurrent setting. Our proof-of-concept work herein provides the basis for the development of a modeling and analytical system that enables single-cell characterization of an individual patient’s tumor and inferred therapeutic vulnerabilities. Although further validation is required, in the form of in vivo studies of these putative druggable targets, our preliminary analysis and results suggest that systems biology techniques can be used to infer and predict therapeutic vulnerabilities that are either selected or induced during standard-of-care treatment. Ultimately, the information gathered from such systematic modeling and analysis of individual tumors may inform clinical treatment in a more targeted manner and enable a rational, tailored precision medicine that accounts for intratumoral cell heterogeneity.</description><issn>1522-8517</issn><issn>1523-5866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNot0L1OwzAUBWALgUQpvACTX8Ctf2LHGV3XbS05cdSEOXLcWAJBixIx8Pa0tNM9wz1n-AB4JXhBcMGWx-HndIzL4yn0pBALTOkdmBFOGeJSiPv_TJHkJH8ET9P0gTElXJAZiKbWHlG2gAo2tto6g7RxDq5UY9aw3httG-srWJq11bYyUNX13iu9g2-Xd7h11q-calpfKlir1pqqRU19rm2shqVfG9c8g4cUPqfh5XbnoN2YVu-Q81urlUNR5hSJREXGA6YyZkPIg-zlIQUcA-YpTwnLwARPRc9YkRdZzkKfZ0WgPaXxIAkObA7odTaOp2kah9R9j-9fYfztCO4uSt1VqbspdWcl9gdMmVVC</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Feroze, Abdullah</creator><creator>Park, James</creator><creator>Emerson, Samuel</creator><creator>Mihalas, Anca</creator><creator>Keene, Dirk</creator><creator>Cimino, Patrick</creator><creator>de Lomana, Adrian Lopez Garcia</creator><creator>Kannan, Kavya</creator><creator>Wu, Wei-Ju</creator><creator>Turkarslan, Serdar</creator><creator>Baliga, Nitin</creator><creator>Patel, Anoop</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211112</creationdate><title>EPCO-23. A SINGLE-CELL BASED PRECISION MEDICINE APPROACH USING GLIOBLASTOMA PATIENT-SPECIFIC MODELS</title><author>Feroze, Abdullah ; Park, James ; Emerson, Samuel ; Mihalas, Anca ; Keene, Dirk ; Cimino, Patrick ; de Lomana, Adrian Lopez Garcia ; Kannan, Kavya ; Wu, Wei-Ju ; Turkarslan, Serdar ; Baliga, Nitin ; Patel, Anoop</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c872-6f2645a028c4ea7a8b8dfa0ca05f7ff08a365f9b33979473ab749a2b22cd810a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feroze, Abdullah</creatorcontrib><creatorcontrib>Park, James</creatorcontrib><creatorcontrib>Emerson, Samuel</creatorcontrib><creatorcontrib>Mihalas, Anca</creatorcontrib><creatorcontrib>Keene, Dirk</creatorcontrib><creatorcontrib>Cimino, Patrick</creatorcontrib><creatorcontrib>de Lomana, Adrian Lopez Garcia</creatorcontrib><creatorcontrib>Kannan, Kavya</creatorcontrib><creatorcontrib>Wu, Wei-Ju</creatorcontrib><creatorcontrib>Turkarslan, Serdar</creatorcontrib><creatorcontrib>Baliga, Nitin</creatorcontrib><creatorcontrib>Patel, Anoop</creatorcontrib><collection>CrossRef</collection><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feroze, Abdullah</au><au>Park, James</au><au>Emerson, Samuel</au><au>Mihalas, Anca</au><au>Keene, Dirk</au><au>Cimino, Patrick</au><au>de Lomana, Adrian Lopez Garcia</au><au>Kannan, Kavya</au><au>Wu, Wei-Ju</au><au>Turkarslan, Serdar</au><au>Baliga, Nitin</au><au>Patel, Anoop</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EPCO-23. A SINGLE-CELL BASED PRECISION MEDICINE APPROACH USING GLIOBLASTOMA PATIENT-SPECIFIC MODELS</atitle><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle><date>2021-11-12</date><risdate>2021</risdate><volume>23</volume><issue>Supplement_6</issue><spage>vi6</spage><epage>vi7</epage><pages>vi6-vi7</pages><issn>1522-8517</issn><eissn>1523-5866</eissn><abstract>Glioblastoma is a heterogeneous tumor made up of cell states that evolve over time. We modeled tumor evolutionary trajectories during standard-of-care treatment using multimodal single-cell analysis of a primary tumor sample, corresponding mouse xenografts subjected to standard of care therapy, and recurrent tumor at autopsy. We mined the multimodal data with single cell SYstems Genetics Network AnaLysis (scSYGNAL) to identify a network of 52 regulators that mediate treatment-induced shifts in xenograft tumor-cell states that were also reflected in recurrence. By integrating scSYGNAL-derived regulatory network information with transcription factor accessibility deviations derived from single-cell ATAC-seq data, we developed consensus networks that regulate subpopulations of primary and recurrent tumor cells. Finally, by matching targeted therapies to active regulatory networks underlying tumor evolutionary trajectories, we provide a framework for applying single-cell-based precision medicine approaches in a concurrent, neo-adjuvant, or recurrent setting. Our proof-of-concept work herein provides the basis for the development of a modeling and analytical system that enables single-cell characterization of an individual patient’s tumor and inferred therapeutic vulnerabilities. Although further validation is required, in the form of in vivo studies of these putative druggable targets, our preliminary analysis and results suggest that systems biology techniques can be used to infer and predict therapeutic vulnerabilities that are either selected or induced during standard-of-care treatment. Ultimately, the information gathered from such systematic modeling and analysis of individual tumors may inform clinical treatment in a more targeted manner and enable a rational, tailored precision medicine that accounts for intratumoral cell heterogeneity.</abstract><doi>10.1093/neuonc/noab196.022</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1522-8517
ispartof Neuro-oncology (Charlottesville, Va.), 2021-11, Vol.23 (Supplement_6), p.vi6-vi7
issn 1522-8517
1523-5866
language eng
recordid cdi_crossref_primary_10_1093_neuonc_noab196_022
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); PubMed Central
title EPCO-23. A SINGLE-CELL BASED PRECISION MEDICINE APPROACH USING GLIOBLASTOMA PATIENT-SPECIFIC MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EPCO-23.%20A%20SINGLE-CELL%20BASED%20PRECISION%20MEDICINE%20APPROACH%20USING%20GLIOBLASTOMA%20PATIENT-SPECIFIC%20MODELS&rft.jtitle=Neuro-oncology%20(Charlottesville,%20Va.)&rft.au=Feroze,%20Abdullah&rft.date=2021-11-12&rft.volume=23&rft.issue=Supplement_6&rft.spage=vi6&rft.epage=vi7&rft.pages=vi6-vi7&rft.issn=1522-8517&rft.eissn=1523-5866&rft_id=info:doi/10.1093/neuonc/noab196.022&rft_dat=%3Ccrossref%3E10_1093_neuonc_noab196_022%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true