Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo

Background. Long-term peritoneal dialysis (PD) is associated with the development of functional and structural alterations of the peritoneal membrane. In this study, we investigated the contribution of low pH lactate buffer, high glucose concentration and glucose degradation products to peritoneal i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nephrology, dialysis, transplantation dialysis, transplantation, 2003-12, Vol.18 (12), p.2629-2637
Hauptverfasser: Zareie, Mohammad, Hekking, Liesbeth H. P., Welten, Angelique G. A., Driesprong, Bas A. J., Schadee-Eestermans, Inge L., Faict, Dirk, Leyssens, Anne, Schalkwijk, Casper G., Beelen, Robert H. J., ter Wee, Piet M., van den Born, Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2637
container_issue 12
container_start_page 2629
container_title Nephrology, dialysis, transplantation
container_volume 18
creator Zareie, Mohammad
Hekking, Liesbeth H. P.
Welten, Angelique G. A.
Driesprong, Bas A. J.
Schadee-Eestermans, Inge L.
Faict, Dirk
Leyssens, Anne
Schalkwijk, Casper G.
Beelen, Robert H. J.
ter Wee, Piet M.
van den Born, Jacob
description Background. Long-term peritoneal dialysis (PD) is associated with the development of functional and structural alterations of the peritoneal membrane. In this study, we investigated the contribution of low pH lactate buffer, high glucose concentration and glucose degradation products to peritoneal injury in a rat peritoneal exposure model. Methods. Rats received daily 10 ml of either heat-sterilized (3.86% glucose, pH 5.2, n = 8) or filter-sterilized PD fluid (3.86% glucose, pH 5.2, n = 8), or lactate buffer (pH 5.2, n = 8) via a mini vascular access port during a 10 week period. Untreated rats served as controls. Results. The low pH lactate buffer instillation induced pronounced morphological changes including the induction of angiogenesis in various peritoneal tissues and mild damage to the mesothelial cell layer covering the peritoneum. It also evoked a cellular response characterized by an increased mesothelial cell density on the liver, the induction of milky spots and accumulation of omental mast cells in the omentum, and significant changes in the composition of peritoneal leukocytes. The addition of glucose to low pH lactate buffer (filter-sterilized PD fluid) strengthened most, but not all of the responses described above and induced a fibrogenic response. In addition to glucose and low pH lactate buffer, the presence of glucose degradation products (heat-sterilized PD fluid) significantly induced an additional omental milky spot response (P 
doi_str_mv 10.1093/ndt/gfg356
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ndt_gfg356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_HXZ_XDF1FZX2_S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-602632301b71f16ade8fe6aa3ae662b5767f6a1aba9249a35a36947e31b0906d3</originalsourceid><addsrcrecordid>eNpF0EFLwzAUB_AgipvTix9AcvEi1iVNk7ZHmc4JAw8qjF3Ca5uUzq4ZSTrct7ezYzu9B__fe4c_QreUPFGSsnFT-HGpS8bFGRrSSJAgZAk_R8MupAHhJB2gK-dWhJA0jONLNNgjHibJEKmJabytstZXpsFG4xpyD17hrNVa2Udc1m1unMLQFMe9UKWFAv5PNtYUbe4d9gZvlK28aRTUuGpWrd11A2-rrblGFxpqp24Oc4S-p69fk1kw_3h7nzzPgzzi3AeChIKFjNAsppoKKFSilQBgoIQIMx6LWAugkEEaRikwDkykUawYzUhKRMFG6KH_m1vjnFVabmy1BruTlMh9V7LrSvZddfiux5s2W6viRA_ldOD-AMDlUGsLTV65k-tQlIq4c0HvKufV7zEH-yO7NOZytljKxcuUTpeLUH6yP8Vbg3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo</title><source>MEDLINE</source><source>Oxford University Press</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Zareie, Mohammad ; Hekking, Liesbeth H. P. ; Welten, Angelique G. A. ; Driesprong, Bas A. J. ; Schadee-Eestermans, Inge L. ; Faict, Dirk ; Leyssens, Anne ; Schalkwijk, Casper G. ; Beelen, Robert H. J. ; ter Wee, Piet M. ; van den Born, Jacob</creator><creatorcontrib>Zareie, Mohammad ; Hekking, Liesbeth H. P. ; Welten, Angelique G. A. ; Driesprong, Bas A. J. ; Schadee-Eestermans, Inge L. ; Faict, Dirk ; Leyssens, Anne ; Schalkwijk, Casper G. ; Beelen, Robert H. J. ; ter Wee, Piet M. ; van den Born, Jacob</creatorcontrib><description>Background. Long-term peritoneal dialysis (PD) is associated with the development of functional and structural alterations of the peritoneal membrane. In this study, we investigated the contribution of low pH lactate buffer, high glucose concentration and glucose degradation products to peritoneal injury in a rat peritoneal exposure model. Methods. Rats received daily 10 ml of either heat-sterilized (3.86% glucose, pH 5.2, n = 8) or filter-sterilized PD fluid (3.86% glucose, pH 5.2, n = 8), or lactate buffer (pH 5.2, n = 8) via a mini vascular access port during a 10 week period. Untreated rats served as controls. Results. The low pH lactate buffer instillation induced pronounced morphological changes including the induction of angiogenesis in various peritoneal tissues and mild damage to the mesothelial cell layer covering the peritoneum. It also evoked a cellular response characterized by an increased mesothelial cell density on the liver, the induction of milky spots and accumulation of omental mast cells in the omentum, and significant changes in the composition of peritoneal leukocytes. The addition of glucose to low pH lactate buffer (filter-sterilized PD fluid) strengthened most, but not all of the responses described above and induced a fibrogenic response. In addition to glucose and low pH lactate buffer, the presence of glucose degradation products (heat-sterilized PD fluid) significantly induced an additional omental milky spot response (P &lt; 0.03) and caused profound mesothelial damage. The vessel density in the omentum and the mesentery was significantly correlated to both the number of tissue mast cells and the hyaluronan content in the peritoneal lavage, which might suggest a role for mast cells and hyaluronan in the induction of angiogenesis. Conclusions. Instillations of low pH lactate buffer, a high glucose concentration and glucose degradation products contribute differently and often cumulatively to peritoneal injury in vivo.</description><identifier>ISSN: 0931-0509</identifier><identifier>EISSN: 1460-2385</identifier><identifier>DOI: 10.1093/ndt/gfg356</identifier><identifier>PMID: 14605288</identifier><identifier>CODEN: NDTREA</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Biological and medical sciences ; Buffers ; CAPD ; Dialysis Solutions - adverse effects ; Emergency and intensive care: renal failure. Dialysis management ; glucose ; Glucose - adverse effects ; glucose degradation products ; Glycation End Products, Advanced ; Hydrogen-Ion Concentration ; Intensive care medicine ; lactate buffer ; Lactic Acid - adverse effects ; Male ; Medical sciences ; Models, Animal ; Omentum - pathology ; Peritoneal Dialysis, Continuous Ambulatory - adverse effects ; Peritoneal Dialysis, Continuous Ambulatory - methods ; Peritoneal Diseases - etiology ; Peritoneal Diseases - pathology ; peritoneal injury ; Peritoneum - pathology ; Rats ; Rats, Wistar</subject><ispartof>Nephrology, dialysis, transplantation, 2003-12, Vol.18 (12), p.2629-2637</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-602632301b71f16ade8fe6aa3ae662b5767f6a1aba9249a35a36947e31b0906d3</citedby><cites>FETCH-LOGICAL-c455t-602632301b71f16ade8fe6aa3ae662b5767f6a1aba9249a35a36947e31b0906d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15284967$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14605288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zareie, Mohammad</creatorcontrib><creatorcontrib>Hekking, Liesbeth H. P.</creatorcontrib><creatorcontrib>Welten, Angelique G. A.</creatorcontrib><creatorcontrib>Driesprong, Bas A. J.</creatorcontrib><creatorcontrib>Schadee-Eestermans, Inge L.</creatorcontrib><creatorcontrib>Faict, Dirk</creatorcontrib><creatorcontrib>Leyssens, Anne</creatorcontrib><creatorcontrib>Schalkwijk, Casper G.</creatorcontrib><creatorcontrib>Beelen, Robert H. J.</creatorcontrib><creatorcontrib>ter Wee, Piet M.</creatorcontrib><creatorcontrib>van den Born, Jacob</creatorcontrib><title>Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo</title><title>Nephrology, dialysis, transplantation</title><addtitle>Nephrol. Dial. Transplant</addtitle><description>Background. Long-term peritoneal dialysis (PD) is associated with the development of functional and structural alterations of the peritoneal membrane. In this study, we investigated the contribution of low pH lactate buffer, high glucose concentration and glucose degradation products to peritoneal injury in a rat peritoneal exposure model. Methods. Rats received daily 10 ml of either heat-sterilized (3.86% glucose, pH 5.2, n = 8) or filter-sterilized PD fluid (3.86% glucose, pH 5.2, n = 8), or lactate buffer (pH 5.2, n = 8) via a mini vascular access port during a 10 week period. Untreated rats served as controls. Results. The low pH lactate buffer instillation induced pronounced morphological changes including the induction of angiogenesis in various peritoneal tissues and mild damage to the mesothelial cell layer covering the peritoneum. It also evoked a cellular response characterized by an increased mesothelial cell density on the liver, the induction of milky spots and accumulation of omental mast cells in the omentum, and significant changes in the composition of peritoneal leukocytes. The addition of glucose to low pH lactate buffer (filter-sterilized PD fluid) strengthened most, but not all of the responses described above and induced a fibrogenic response. In addition to glucose and low pH lactate buffer, the presence of glucose degradation products (heat-sterilized PD fluid) significantly induced an additional omental milky spot response (P &lt; 0.03) and caused profound mesothelial damage. The vessel density in the omentum and the mesentery was significantly correlated to both the number of tissue mast cells and the hyaluronan content in the peritoneal lavage, which might suggest a role for mast cells and hyaluronan in the induction of angiogenesis. Conclusions. Instillations of low pH lactate buffer, a high glucose concentration and glucose degradation products contribute differently and often cumulatively to peritoneal injury in vivo.</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Buffers</subject><subject>CAPD</subject><subject>Dialysis Solutions - adverse effects</subject><subject>Emergency and intensive care: renal failure. Dialysis management</subject><subject>glucose</subject><subject>Glucose - adverse effects</subject><subject>glucose degradation products</subject><subject>Glycation End Products, Advanced</subject><subject>Hydrogen-Ion Concentration</subject><subject>Intensive care medicine</subject><subject>lactate buffer</subject><subject>Lactic Acid - adverse effects</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Models, Animal</subject><subject>Omentum - pathology</subject><subject>Peritoneal Dialysis, Continuous Ambulatory - adverse effects</subject><subject>Peritoneal Dialysis, Continuous Ambulatory - methods</subject><subject>Peritoneal Diseases - etiology</subject><subject>Peritoneal Diseases - pathology</subject><subject>peritoneal injury</subject><subject>Peritoneum - pathology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><issn>0931-0509</issn><issn>1460-2385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0EFLwzAUB_AgipvTix9AcvEi1iVNk7ZHmc4JAw8qjF3Ca5uUzq4ZSTrct7ezYzu9B__fe4c_QreUPFGSsnFT-HGpS8bFGRrSSJAgZAk_R8MupAHhJB2gK-dWhJA0jONLNNgjHibJEKmJabytstZXpsFG4xpyD17hrNVa2Udc1m1unMLQFMe9UKWFAv5PNtYUbe4d9gZvlK28aRTUuGpWrd11A2-rrblGFxpqp24Oc4S-p69fk1kw_3h7nzzPgzzi3AeChIKFjNAsppoKKFSilQBgoIQIMx6LWAugkEEaRikwDkykUawYzUhKRMFG6KH_m1vjnFVabmy1BruTlMh9V7LrSvZddfiux5s2W6viRA_ldOD-AMDlUGsLTV65k-tQlIq4c0HvKufV7zEH-yO7NOZytljKxcuUTpeLUH6yP8Vbg3I</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Zareie, Mohammad</creator><creator>Hekking, Liesbeth H. P.</creator><creator>Welten, Angelique G. A.</creator><creator>Driesprong, Bas A. J.</creator><creator>Schadee-Eestermans, Inge L.</creator><creator>Faict, Dirk</creator><creator>Leyssens, Anne</creator><creator>Schalkwijk, Casper G.</creator><creator>Beelen, Robert H. J.</creator><creator>ter Wee, Piet M.</creator><creator>van den Born, Jacob</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031201</creationdate><title>Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo</title><author>Zareie, Mohammad ; Hekking, Liesbeth H. P. ; Welten, Angelique G. A. ; Driesprong, Bas A. J. ; Schadee-Eestermans, Inge L. ; Faict, Dirk ; Leyssens, Anne ; Schalkwijk, Casper G. ; Beelen, Robert H. J. ; ter Wee, Piet M. ; van den Born, Jacob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-602632301b71f16ade8fe6aa3ae662b5767f6a1aba9249a35a36947e31b0906d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Buffers</topic><topic>CAPD</topic><topic>Dialysis Solutions - adverse effects</topic><topic>Emergency and intensive care: renal failure. Dialysis management</topic><topic>glucose</topic><topic>Glucose - adverse effects</topic><topic>glucose degradation products</topic><topic>Glycation End Products, Advanced</topic><topic>Hydrogen-Ion Concentration</topic><topic>Intensive care medicine</topic><topic>lactate buffer</topic><topic>Lactic Acid - adverse effects</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Models, Animal</topic><topic>Omentum - pathology</topic><topic>Peritoneal Dialysis, Continuous Ambulatory - adverse effects</topic><topic>Peritoneal Dialysis, Continuous Ambulatory - methods</topic><topic>Peritoneal Diseases - etiology</topic><topic>Peritoneal Diseases - pathology</topic><topic>peritoneal injury</topic><topic>Peritoneum - pathology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zareie, Mohammad</creatorcontrib><creatorcontrib>Hekking, Liesbeth H. P.</creatorcontrib><creatorcontrib>Welten, Angelique G. A.</creatorcontrib><creatorcontrib>Driesprong, Bas A. J.</creatorcontrib><creatorcontrib>Schadee-Eestermans, Inge L.</creatorcontrib><creatorcontrib>Faict, Dirk</creatorcontrib><creatorcontrib>Leyssens, Anne</creatorcontrib><creatorcontrib>Schalkwijk, Casper G.</creatorcontrib><creatorcontrib>Beelen, Robert H. J.</creatorcontrib><creatorcontrib>ter Wee, Piet M.</creatorcontrib><creatorcontrib>van den Born, Jacob</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nephrology, dialysis, transplantation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zareie, Mohammad</au><au>Hekking, Liesbeth H. P.</au><au>Welten, Angelique G. A.</au><au>Driesprong, Bas A. J.</au><au>Schadee-Eestermans, Inge L.</au><au>Faict, Dirk</au><au>Leyssens, Anne</au><au>Schalkwijk, Casper G.</au><au>Beelen, Robert H. J.</au><au>ter Wee, Piet M.</au><au>van den Born, Jacob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo</atitle><jtitle>Nephrology, dialysis, transplantation</jtitle><addtitle>Nephrol. Dial. Transplant</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>18</volume><issue>12</issue><spage>2629</spage><epage>2637</epage><pages>2629-2637</pages><issn>0931-0509</issn><eissn>1460-2385</eissn><coden>NDTREA</coden><abstract>Background. Long-term peritoneal dialysis (PD) is associated with the development of functional and structural alterations of the peritoneal membrane. In this study, we investigated the contribution of low pH lactate buffer, high glucose concentration and glucose degradation products to peritoneal injury in a rat peritoneal exposure model. Methods. Rats received daily 10 ml of either heat-sterilized (3.86% glucose, pH 5.2, n = 8) or filter-sterilized PD fluid (3.86% glucose, pH 5.2, n = 8), or lactate buffer (pH 5.2, n = 8) via a mini vascular access port during a 10 week period. Untreated rats served as controls. Results. The low pH lactate buffer instillation induced pronounced morphological changes including the induction of angiogenesis in various peritoneal tissues and mild damage to the mesothelial cell layer covering the peritoneum. It also evoked a cellular response characterized by an increased mesothelial cell density on the liver, the induction of milky spots and accumulation of omental mast cells in the omentum, and significant changes in the composition of peritoneal leukocytes. The addition of glucose to low pH lactate buffer (filter-sterilized PD fluid) strengthened most, but not all of the responses described above and induced a fibrogenic response. In addition to glucose and low pH lactate buffer, the presence of glucose degradation products (heat-sterilized PD fluid) significantly induced an additional omental milky spot response (P &lt; 0.03) and caused profound mesothelial damage. The vessel density in the omentum and the mesentery was significantly correlated to both the number of tissue mast cells and the hyaluronan content in the peritoneal lavage, which might suggest a role for mast cells and hyaluronan in the induction of angiogenesis. Conclusions. Instillations of low pH lactate buffer, a high glucose concentration and glucose degradation products contribute differently and often cumulatively to peritoneal injury in vivo.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>14605288</pmid><doi>10.1093/ndt/gfg356</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0931-0509
ispartof Nephrology, dialysis, transplantation, 2003-12, Vol.18 (12), p.2629-2637
issn 0931-0509
1460-2385
language eng
recordid cdi_crossref_primary_10_1093_ndt_gfg356
source MEDLINE; Oxford University Press; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animals
Biological and medical sciences
Buffers
CAPD
Dialysis Solutions - adverse effects
Emergency and intensive care: renal failure. Dialysis management
glucose
Glucose - adverse effects
glucose degradation products
Glycation End Products, Advanced
Hydrogen-Ion Concentration
Intensive care medicine
lactate buffer
Lactic Acid - adverse effects
Male
Medical sciences
Models, Animal
Omentum - pathology
Peritoneal Dialysis, Continuous Ambulatory - adverse effects
Peritoneal Dialysis, Continuous Ambulatory - methods
Peritoneal Diseases - etiology
Peritoneal Diseases - pathology
peritoneal injury
Peritoneum - pathology
Rats
Rats, Wistar
title Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20lactate%20buffer,%20glucose%20and%20glucose%20degradation%20products%20to%20peritoneal%20injury%20in%20vivo&rft.jtitle=Nephrology,%20dialysis,%20transplantation&rft.au=Zareie,%20Mohammad&rft.date=2003-12-01&rft.volume=18&rft.issue=12&rft.spage=2629&rft.epage=2637&rft.pages=2629-2637&rft.issn=0931-0509&rft.eissn=1460-2385&rft.coden=NDTREA&rft_id=info:doi/10.1093/ndt/gfg356&rft_dat=%3Cistex_cross%3Eark_67375_HXZ_XDF1FZX2_S%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/14605288&rfr_iscdi=true