Baryon-dark matter scattering and first star formation

The recent detection of the sky-averaged 21-cm cosmological signal indicates a stronger absorption than the maximum allowed value based on the standard model. One explanation for the required colder primordial gas is the energy transfer between the baryon and dark matter (DM) fluids due to non-gravi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society. Letters 2018-10, Vol.480 (1), p.L85-L89
Hauptverfasser: Hirano, Shingo, Bromm, Volker
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L89
container_issue 1
container_start_page L85
container_title Monthly notices of the Royal Astronomical Society. Letters
container_volume 480
creator Hirano, Shingo
Bromm, Volker
description The recent detection of the sky-averaged 21-cm cosmological signal indicates a stronger absorption than the maximum allowed value based on the standard model. One explanation for the required colder primordial gas is the energy transfer between the baryon and dark matter (DM) fluids due to non-gravitational scattering. Here, we explore the thermal evolution of primordial gas, collapsing to form Population III (Pop III) stars, when this energy transfer is included. Performing a series of one-zone calculations, we find that the evolution results in stars more massive than in the standard model, provided that the DM is described by the best-fitting parameters inferred from the 21-cm observation. On the other hand, a significant part of the DM parameter space can be excluded by the requirement to form massive Pop III stars sufficiently early in cosmic history. Otherwise, the radiation background needed to bring about the strong Wouthuysen–Field coupling at $z$ ≳ 17, inferred to explain the 21-cm absorption feature, could not be built-up. Intriguingly, the independent constraint from the physics of first star formation at high densities points to a similarly narrow range in DM properties. This exploratory study has to be followed-up with self-consistent three-dimensional simulations for a more rigorous derivation.
doi_str_mv 10.1093/mnrasl/sly132
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnrasl_sly132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_mnrasl_sly132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-68c89b55828e0b43f6a3cddb29b1d7241100f5af40b833308afb9ce8d96b4b963</originalsourceid><addsrcrecordid>eNo9j8tOwzAURC0EEqWwZO8fcHudazv2EqrykCqxgXXkJwokDrKz6d9TCGJ1ZjEazSHklsOGg8HtmIutw7YOR47NGVnxVkiGBvH8PzfyklzV-gGArW71iqh7W45TZsGWTzraeY6FVv_LPr9TmwNNfakzrbMtNE3l1OmnfE0ukh1qvPnjmrw97F93T-zw8vi8uzswj4AzU9pr46TUjY7gBCZl0YfgGuN4aBvBOUCSNglwGhFB2-SMjzoY5YQzCteELbu-TLWWmLqv0o-nyx2H7ke6W6S7RRq_AeucTVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Baryon-dark matter scattering and first star formation</title><source>Oxford Journals Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Hirano, Shingo ; Bromm, Volker</creator><creatorcontrib>Hirano, Shingo ; Bromm, Volker</creatorcontrib><description>The recent detection of the sky-averaged 21-cm cosmological signal indicates a stronger absorption than the maximum allowed value based on the standard model. One explanation for the required colder primordial gas is the energy transfer between the baryon and dark matter (DM) fluids due to non-gravitational scattering. Here, we explore the thermal evolution of primordial gas, collapsing to form Population III (Pop III) stars, when this energy transfer is included. Performing a series of one-zone calculations, we find that the evolution results in stars more massive than in the standard model, provided that the DM is described by the best-fitting parameters inferred from the 21-cm observation. On the other hand, a significant part of the DM parameter space can be excluded by the requirement to form massive Pop III stars sufficiently early in cosmic history. Otherwise, the radiation background needed to bring about the strong Wouthuysen–Field coupling at $z$ ≳ 17, inferred to explain the 21-cm absorption feature, could not be built-up. Intriguingly, the independent constraint from the physics of first star formation at high densities points to a similarly narrow range in DM properties. This exploratory study has to be followed-up with self-consistent three-dimensional simulations for a more rigorous derivation.</description><identifier>ISSN: 1745-3925</identifier><identifier>EISSN: 1745-3933</identifier><identifier>DOI: 10.1093/mnrasl/sly132</identifier><language>eng</language><ispartof>Monthly notices of the Royal Astronomical Society. Letters, 2018-10, Vol.480 (1), p.L85-L89</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-68c89b55828e0b43f6a3cddb29b1d7241100f5af40b833308afb9ce8d96b4b963</citedby><cites>FETCH-LOGICAL-c303t-68c89b55828e0b43f6a3cddb29b1d7241100f5af40b833308afb9ce8d96b4b963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hirano, Shingo</creatorcontrib><creatorcontrib>Bromm, Volker</creatorcontrib><title>Baryon-dark matter scattering and first star formation</title><title>Monthly notices of the Royal Astronomical Society. Letters</title><description>The recent detection of the sky-averaged 21-cm cosmological signal indicates a stronger absorption than the maximum allowed value based on the standard model. One explanation for the required colder primordial gas is the energy transfer between the baryon and dark matter (DM) fluids due to non-gravitational scattering. Here, we explore the thermal evolution of primordial gas, collapsing to form Population III (Pop III) stars, when this energy transfer is included. Performing a series of one-zone calculations, we find that the evolution results in stars more massive than in the standard model, provided that the DM is described by the best-fitting parameters inferred from the 21-cm observation. On the other hand, a significant part of the DM parameter space can be excluded by the requirement to form massive Pop III stars sufficiently early in cosmic history. Otherwise, the radiation background needed to bring about the strong Wouthuysen–Field coupling at $z$ ≳ 17, inferred to explain the 21-cm absorption feature, could not be built-up. Intriguingly, the independent constraint from the physics of first star formation at high densities points to a similarly narrow range in DM properties. This exploratory study has to be followed-up with self-consistent three-dimensional simulations for a more rigorous derivation.</description><issn>1745-3925</issn><issn>1745-3933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9j8tOwzAURC0EEqWwZO8fcHudazv2EqrykCqxgXXkJwokDrKz6d9TCGJ1ZjEazSHklsOGg8HtmIutw7YOR47NGVnxVkiGBvH8PzfyklzV-gGArW71iqh7W45TZsGWTzraeY6FVv_LPr9TmwNNfakzrbMtNE3l1OmnfE0ukh1qvPnjmrw97F93T-zw8vi8uzswj4AzU9pr46TUjY7gBCZl0YfgGuN4aBvBOUCSNglwGhFB2-SMjzoY5YQzCteELbu-TLWWmLqv0o-nyx2H7ke6W6S7RRq_AeucTVQ</recordid><startdate>20181011</startdate><enddate>20181011</enddate><creator>Hirano, Shingo</creator><creator>Bromm, Volker</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181011</creationdate><title>Baryon-dark matter scattering and first star formation</title><author>Hirano, Shingo ; Bromm, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-68c89b55828e0b43f6a3cddb29b1d7241100f5af40b833308afb9ce8d96b4b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirano, Shingo</creatorcontrib><creatorcontrib>Bromm, Volker</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirano, Shingo</au><au>Bromm, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Baryon-dark matter scattering and first star formation</atitle><jtitle>Monthly notices of the Royal Astronomical Society. Letters</jtitle><date>2018-10-11</date><risdate>2018</risdate><volume>480</volume><issue>1</issue><spage>L85</spage><epage>L89</epage><pages>L85-L89</pages><issn>1745-3925</issn><eissn>1745-3933</eissn><abstract>The recent detection of the sky-averaged 21-cm cosmological signal indicates a stronger absorption than the maximum allowed value based on the standard model. One explanation for the required colder primordial gas is the energy transfer between the baryon and dark matter (DM) fluids due to non-gravitational scattering. Here, we explore the thermal evolution of primordial gas, collapsing to form Population III (Pop III) stars, when this energy transfer is included. Performing a series of one-zone calculations, we find that the evolution results in stars more massive than in the standard model, provided that the DM is described by the best-fitting parameters inferred from the 21-cm observation. On the other hand, a significant part of the DM parameter space can be excluded by the requirement to form massive Pop III stars sufficiently early in cosmic history. Otherwise, the radiation background needed to bring about the strong Wouthuysen–Field coupling at $z$ ≳ 17, inferred to explain the 21-cm absorption feature, could not be built-up. Intriguingly, the independent constraint from the physics of first star formation at high densities points to a similarly narrow range in DM properties. This exploratory study has to be followed-up with self-consistent three-dimensional simulations for a more rigorous derivation.</abstract><doi>10.1093/mnrasl/sly132</doi></addata></record>
fulltext fulltext
identifier ISSN: 1745-3925
ispartof Monthly notices of the Royal Astronomical Society. Letters, 2018-10, Vol.480 (1), p.L85-L89
issn 1745-3925
1745-3933
language eng
recordid cdi_crossref_primary_10_1093_mnrasl_sly132
source Oxford Journals Open Access Collection; Alma/SFX Local Collection
title Baryon-dark matter scattering and first star formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Baryon-dark%20matter%20scattering%20and%20first%20star%20formation&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society.%20Letters&rft.au=Hirano,%20Shingo&rft.date=2018-10-11&rft.volume=480&rft.issue=1&rft.spage=L85&rft.epage=L89&rft.pages=L85-L89&rft.issn=1745-3925&rft.eissn=1745-3933&rft_id=info:doi/10.1093/mnrasl/sly132&rft_dat=%3Ccrossref%3E10_1093_mnrasl_sly132%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true