Galaxy image deconvolution for weak gravitational lensing with unrolled plug-and-play ADMM
Removing optical and atmospheric blur from galaxy images significantly improves galaxy shape measurements for weak gravitational lensing and galaxy evolution studies. This ill-posed linear inverse problem is usually solved with deconvolution algorithms enhanced by regularisation priors or deep learn...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society. Letters 2023-06, Vol.522 (1), p.L31-L35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | L35 |
---|---|
container_issue | 1 |
container_start_page | L31 |
container_title | Monthly notices of the Royal Astronomical Society. Letters |
container_volume | 522 |
creator | Li, Tianao Alexander, Emma |
description | Removing optical and atmospheric blur from galaxy images significantly improves galaxy shape measurements for weak gravitational lensing and galaxy evolution studies. This ill-posed linear inverse problem is usually solved with deconvolution algorithms enhanced by regularisation priors or deep learning. We introduce a so-called ’physics-informed deep learning’ approach to the Point Spread Function (PSF) deconvolution problem in galaxy surveys. We apply algorithm unrolling and the Plug-and-Play technique to the Alternating Direction Method of Multipliers (ADMM), in which a neural network learns appropriate hyperparameters and denoising priors from simulated galaxy images. We characterize the time-performance trade-off of several methods for galaxies of differing brightness levels, as well as our method’s robustness to systematic PSF errors and network ablations. We show an improvement in reduced shear ellipticity error of 38.6 per cent (SNR=20)/45.0 per cent (SNR=200) compared to classic methods and 7.4 per cent (SNR=20)/33.2 per cent (SNR = 200) compared to modern methods (https://github.com/Lukeli0425/Galaxy-Deconv). |
doi_str_mv | 10.1093/mnrasl/slad032 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnrasl_slad032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_mnrasl_slad032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-8bd65cb406456be74798b9e9b2ebcea11912705e0ea571fb0d6f4f199ff2b06b3</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EEqWwMvsH0tpxHMdjVaAgtWKBhSV6Tp5DwHUqO2nJ30PViule3eFI9xByz9mMMy3mWx8gunl0UDORXpAJV5lMhBbi8r-n8prcxPjFmFCFKibkYwUOfkbabqFBWmPV-X3nhr7tPLVdoAeEb9oE2Lc9HEdw1KGPrW_ooe0_6eBD5xzWdOeGJgFfJzsHI108bDa35MqCi3h3zil5f3p8Wz4n69fVy3KxTqpUZH1SmDqXlclYnsncoMqULoxGbVI0FQLnmqeKSWQIUnFrWJ3bzHKtrU0Ny42YktmJW4UuxoC23IW_O2EsOSuPZsqTmfJsRvwCdfNbmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Galaxy image deconvolution for weak gravitational lensing with unrolled plug-and-play ADMM</title><source>Oxford Journals Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Li, Tianao ; Alexander, Emma</creator><creatorcontrib>Li, Tianao ; Alexander, Emma</creatorcontrib><description>Removing optical and atmospheric blur from galaxy images significantly improves galaxy shape measurements for weak gravitational lensing and galaxy evolution studies. This ill-posed linear inverse problem is usually solved with deconvolution algorithms enhanced by regularisation priors or deep learning. We introduce a so-called ’physics-informed deep learning’ approach to the Point Spread Function (PSF) deconvolution problem in galaxy surveys. We apply algorithm unrolling and the Plug-and-Play technique to the Alternating Direction Method of Multipliers (ADMM), in which a neural network learns appropriate hyperparameters and denoising priors from simulated galaxy images. We characterize the time-performance trade-off of several methods for galaxies of differing brightness levels, as well as our method’s robustness to systematic PSF errors and network ablations. We show an improvement in reduced shear ellipticity error of 38.6 per cent (SNR=20)/45.0 per cent (SNR=200) compared to classic methods and 7.4 per cent (SNR=20)/33.2 per cent (SNR = 200) compared to modern methods (https://github.com/Lukeli0425/Galaxy-Deconv).</description><identifier>ISSN: 1745-3925</identifier><identifier>EISSN: 1745-3933</identifier><identifier>DOI: 10.1093/mnrasl/slad032</identifier><language>eng</language><ispartof>Monthly notices of the Royal Astronomical Society. Letters, 2023-06, Vol.522 (1), p.L31-L35</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c234t-8bd65cb406456be74798b9e9b2ebcea11912705e0ea571fb0d6f4f199ff2b06b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Tianao</creatorcontrib><creatorcontrib>Alexander, Emma</creatorcontrib><title>Galaxy image deconvolution for weak gravitational lensing with unrolled plug-and-play ADMM</title><title>Monthly notices of the Royal Astronomical Society. Letters</title><description>Removing optical and atmospheric blur from galaxy images significantly improves galaxy shape measurements for weak gravitational lensing and galaxy evolution studies. This ill-posed linear inverse problem is usually solved with deconvolution algorithms enhanced by regularisation priors or deep learning. We introduce a so-called ’physics-informed deep learning’ approach to the Point Spread Function (PSF) deconvolution problem in galaxy surveys. We apply algorithm unrolling and the Plug-and-Play technique to the Alternating Direction Method of Multipliers (ADMM), in which a neural network learns appropriate hyperparameters and denoising priors from simulated galaxy images. We characterize the time-performance trade-off of several methods for galaxies of differing brightness levels, as well as our method’s robustness to systematic PSF errors and network ablations. We show an improvement in reduced shear ellipticity error of 38.6 per cent (SNR=20)/45.0 per cent (SNR=200) compared to classic methods and 7.4 per cent (SNR=20)/33.2 per cent (SNR = 200) compared to modern methods (https://github.com/Lukeli0425/Galaxy-Deconv).</description><issn>1745-3925</issn><issn>1745-3933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAURS0EEqWwMvsH0tpxHMdjVaAgtWKBhSV6Tp5DwHUqO2nJ30PViule3eFI9xByz9mMMy3mWx8gunl0UDORXpAJV5lMhBbi8r-n8prcxPjFmFCFKibkYwUOfkbabqFBWmPV-X3nhr7tPLVdoAeEb9oE2Lc9HEdw1KGPrW_ooe0_6eBD5xzWdOeGJgFfJzsHI108bDa35MqCi3h3zil5f3p8Wz4n69fVy3KxTqpUZH1SmDqXlclYnsncoMqULoxGbVI0FQLnmqeKSWQIUnFrWJ3bzHKtrU0Ny42YktmJW4UuxoC23IW_O2EsOSuPZsqTmfJsRvwCdfNbmQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Li, Tianao</creator><creator>Alexander, Emma</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Galaxy image deconvolution for weak gravitational lensing with unrolled plug-and-play ADMM</title><author>Li, Tianao ; Alexander, Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-8bd65cb406456be74798b9e9b2ebcea11912705e0ea571fb0d6f4f199ff2b06b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tianao</creatorcontrib><creatorcontrib>Alexander, Emma</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tianao</au><au>Alexander, Emma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galaxy image deconvolution for weak gravitational lensing with unrolled plug-and-play ADMM</atitle><jtitle>Monthly notices of the Royal Astronomical Society. Letters</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>522</volume><issue>1</issue><spage>L31</spage><epage>L35</epage><pages>L31-L35</pages><issn>1745-3925</issn><eissn>1745-3933</eissn><abstract>Removing optical and atmospheric blur from galaxy images significantly improves galaxy shape measurements for weak gravitational lensing and galaxy evolution studies. This ill-posed linear inverse problem is usually solved with deconvolution algorithms enhanced by regularisation priors or deep learning. We introduce a so-called ’physics-informed deep learning’ approach to the Point Spread Function (PSF) deconvolution problem in galaxy surveys. We apply algorithm unrolling and the Plug-and-Play technique to the Alternating Direction Method of Multipliers (ADMM), in which a neural network learns appropriate hyperparameters and denoising priors from simulated galaxy images. We characterize the time-performance trade-off of several methods for galaxies of differing brightness levels, as well as our method’s robustness to systematic PSF errors and network ablations. We show an improvement in reduced shear ellipticity error of 38.6 per cent (SNR=20)/45.0 per cent (SNR=200) compared to classic methods and 7.4 per cent (SNR=20)/33.2 per cent (SNR = 200) compared to modern methods (https://github.com/Lukeli0425/Galaxy-Deconv).</abstract><doi>10.1093/mnrasl/slad032</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-3925 |
ispartof | Monthly notices of the Royal Astronomical Society. Letters, 2023-06, Vol.522 (1), p.L31-L35 |
issn | 1745-3925 1745-3933 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnrasl_slad032 |
source | Oxford Journals Open Access Collection; Alma/SFX Local Collection |
title | Galaxy image deconvolution for weak gravitational lensing with unrolled plug-and-play ADMM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galaxy%20image%20deconvolution%20for%20weak%20gravitational%20lensing%20with%20unrolled%20plug-and-play%20ADMM&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society.%20Letters&rft.au=Li,%20Tianao&rft.date=2023-06-01&rft.volume=522&rft.issue=1&rft.spage=L31&rft.epage=L35&rft.pages=L31-L35&rft.issn=1745-3925&rft.eissn=1745-3933&rft_id=info:doi/10.1093/mnrasl/slad032&rft_dat=%3Ccrossref%3E10_1093_mnrasl_slad032%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |